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Abstract

Consider the moment curve in the real Euclidean space Rd defined
parametrically by the map γ : R → Rd, t �→ γ(t) = (t, t2, . . . , td). The
cyclic d-polytope Cd(t1, . . . , tn) is the convex hull of the n, n > d,
different points on this curve. The matroidal analogues are the alter-
nating oriented uniform matroids. A polytope [resp. matroid polytope]
is called cyclic if its face lattice is isomorphic to that of Cd(t1, . . . , tn).
We give combinatorial and geometrical characterizations of cyclic [ma-
troid] polytopes. A simple evenness criterion determining the facets of
Cd(t1, . . . , tn) was given by David Gale. We characterize the admissible
orderings of the vertices of the cyclic polytope, i.e., those linear order-
ings of the vertices for which Gale’s evenness criterion holds. Proofs
give a systematic account on an oriented matroid approach to cyclic
polytopes.
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1 Introduction

The standard d-th cyclic polytope with n, n > d, vertices, denoted by
Cd(t1, t2, . . . , tn), was discovered by Constantin Carathéodory [8, 9] in the
context of harmonic analysis, and has been rediscovered many times; it is
defined as the convex hull in Rd of n, n > d, different points γ(t1), . . . , γ(tn)
on the moment curve in the real Euclidean space Rd defined parametrically
by the map γ : R → Rd, t �→ γ(t) = (t, t2, . . . , td). Moment curves offer
a rich spatial structure that occurs in various domains: let us mention, for
instance, the use of a d-th moment curve for embedding m-dimensional sim-
plicial complexes in R2m+1, existence of mutually adjacent convex bodies in
R3 [13], or for constructing n “neighborly” convex bodies in Rd (any two
of them share a common facet) [15]. d-th cyclic polytopes are the simplest
examples of d-dimensional neighborly polytopes, i.e., in which every subset of
k, k ≤ �d/2�, vertices is the vertex set of a face of the polytope. Neighborly
d-polytopes play a prominent role in the theory of polytopes since, among
d-polytopes with n vertices, they have the greatest number of facets [“Upper
bound theorem,” conjectured by Theodore S. Motzkin [28] and proved by
Peter McMullen [26, 27] ]. Recent and quite unexpected other applications
of cyclic polytopes may be found in [2, 24, 29, 39].

Let us recall that the set of all the faces [including the improper faces]
of a [convex] polytope P, when partially ordered by inclusion, is a finite
lattice called the face lattice of P. Two polytopes are said to be combinato-
rially equivalent, or of the same combinatorial type, if they have isomorphic
face lattices. Cyclic polytopes are precisely those which are combinatorially
equivalent to the standard cyclic polytope Cd(t1, t2, . . . , tn).

As Branko Grünbaum noticed [22], it is not surprising that many other
curves can take the place of the moment curve for developing the theory
of cyclic polytopes: examples can be found in [12, 20, 21, 33]. A param-
eterized curve α : R → Rd, t �→ α(t) is called a d-th cyclic curve [resp.
d-th order curve] when the convex hull of any n, n ≥ d + 1, different points
α(t1), . . . , α(tn) is a cyclic d-polytope [resp. no affine hyperplane H in Rd

meets the curve in more than d points]. Answering an implicit question in
Grünbaum [22] we prove that a curve is cyclic if and only if it is an or-
der curve. Gale [21], for instance, choose the trigonometric moment curve
α : R → R2d, defined by α(t) = (cos t, sin t, . . . , cos dt, sindt) ∈ R2d. The
convex hull of the n, n ≥ 2k + 1, points {α(2πj/n), j = 0, 1, . . . , n − 1} is
the regular cyclic 2d-dimensional polytope with n vertices. In this sense, the
cyclic polytopes are a satisfactory d-dimensional analogue of a plane convex
n-gon.
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A more restrict notion of equivalence of polytopes is the concept of “geo-
metrical type”. Two polytopes are said to be geometrically equivalent, or of
the same geometrical type, if there is a one-to-one correspondence between
vertex sets that preserve not only the affine dependencies of the points, but
also preserves the bipartition of the coefficients of any such minimal depen-
dence into positive and negative ones (for details see Section 2). Geometrical
equivalence extends to any finite point set in Rd: the corresponding equiv-
alence class describes the “geometry of the set” and is usually called its
“geometrical type.”

Oriented matroids constitute an unifying and efficient setting for model-
ing geometrical types and also their interplay with combinatorial types. The
present paper adopts this point of view. Investigating the geometry of cyclic
polytopes, we review and renovate known results, and obtain new ones. Sev-
eral tools, introduced in an earlier version of our manuscript (quoted as [10]
by various authors), have received, afterwards, more general interest.

The content is as follows. In Section 2 we introduce prerequisites dealing
with oriented matroids, polytopes, and their matroidal analogues, i.e., “ma-
troid polytopes.” We present in Section 3 the geometry type of the standard
cyclic polytope Cd(t1, . . . , tn), known in the literature as the “alternating
oriented uniform matroid of rank d+1 on n elements.” We give a short proof
of an unpublished “folklore,” stating that some Cd(t1, t2, . . . , tn) appears in
every sufficiently large set of points in general position in Rd (no other poly-
topal geometry shares this property!). In Section 4, we examine the facial
structure of the cyclic polytopes. A simple “evenness criterion” determining
the facets [resp. faces] of Cd(t1, t2, . . . , tn), was given by David Gale [21]
[resp. Geoffrey Shephard]. We give a direct short proof of an extension of
Gale’s and Shephard’s criteria to “cyclic matroid polytopes.” Cyclic matroid
polytopes are thoroughly investigated in Section 5. All cyclic [matroid] poly-
topes of even dimension [odd rank] are geometrically equivalent. A short
direct proof of this “rigidity property,” proved more generally for even di-
mensional neighborly polytopes by Ido Shemer [34], is given here. For odd
dimension [even rank], rigidity fails, in a strong sense: there are polytopes
combinatorially equivalent to cyclic polytopes but of a different geometri-
cal type. We describe a possible construction of all these odd dimensional
cyclic polytopes. Making use of the some results on “inseparability graphs”
of oriented matroids [11, 32], we prove two results that emphasize the very
special place of alternating oriented matroids among realizable cyclic ma-
troid polytopes of even rank. To conclude, we provide a characterization of
the admissible orderings, i.e., the linear orderings of the vertices of a cyclic
[matroid] polytope such that Gale’s evenness criterion holds.
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Although a full understanding of the text supposes the reader to be
familiar with matroid theory [40, 41] and oriented matroid theory [3]. Ad-
ditional information concerning polytopes may be found in [1, 7, 19, 26, 30,
35, 37, 38, 42, 43] and their references. Nevertheless the paper is essentially
self-contained and may support an introductory course on oriented matroids
and/or polytopes.

2 Oriented Matroids and Polytopes

We remember that a finite subset X , X ⊂ Rd is affinely dependent if there
are reals λx, x ∈ X in which some λx 
= 0 and

∑
x∈X λx = 0 satisfying∑

x∈X x · λx = 0. Let S be a fixed finite set of points in Rd \ {0}. Let C be
the set of the minimal [to inclusion] affine dependent subset of S. The pair
(S, C) is called the matroid of the affine dependencies on the ground set S,
and denoted Aff (S). We say that C is the set of the circuits of the matroid
Aff (S). The natural ordering of R induces a canonical circuit signature of
the circuits of C. Observe that if C ∈ C then the map λ : C → R \ {0},
x �→ λx, is unique up to multiplication by a non-zero real number. Thus
(C, λ) determines a pair of opposite signed sets:

C := (C+ = {x ∈ C : λx > 0}; C− = {x ∈ C : λx < 0})

and − C := ((−C)+ = C−; (−C)− = C+).

We say that {C,−C} is a pair of opposite signed circuits determined by the
finite set S. The underlying set C := C+ ∪ C−[= C] is called the support of
the opposite signed circuits C, −C. Let C be the collection of signed circuits
determined by the set of circuits C of Aff (S). The pair (S, C) is called the
oriented matroid of the affine dependencies on the ground set S and denote
Aff (S). Note that the elements of C satisfy the following signed elimination
property :

• For all C1, C2 ∈ C, and a ∈ C+
1 ∩ C−

2 there is a signed circuit C3 ∈ C

such that C+
3 ⊂ C+

1 ∪ C+
2 \ {a} and C−

3 ⊂ C−
1 ∪ C−

2 \ {a}.

By forgetting the signs we recover the underlying matroid Aff (S). Consider
a pair {A, B}, A∩B = ∅, A∪B ⊂ S, where S is a finite subset of Rd. The
pair {A, B} is called a Radon partition in S provided conv(A)∩conv(B) 
= ∅.
We say that {A, B} is a primitive Radon partition in S if it is minimal in the
sense that it does not extend any other Radon partition in S, see [23]. Then
it is clear that the pair {A, B} is a primitive Radon partition in S if and only
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(C+ = A , C− = B) is a signed circuit of Aff (S). We observe that the pair
{A, B} is a non-Radon partition in S (i.e., conv(A) ∩ conv(B) = ∅) if and
only if there is an affine hyperplane H in Rd with corresponding halfspaces
H+ and H− such that A ⊂ H+, B ⊂ H− and (A ∪ B) ∩ H = ∅. The
reader is referred to [14, 16, 17] for a discussion of Radon partitions. Note
that the set of the “different Radon types determined by a set of n points
in Rd” studied by Jürgen Eckhoff [16, 17], coincides with the set of “non
isomorphic oriented matroids of the affine dependencies determined by a set
of n points in Rd ”.

The cardinal of the maximal affinely independent subsets of Y , Y ⊂ S,
is said to be the rank of Y in Aff (S). Set rank(Aff (S)) = rank(Aff (S)) =
rank(S). A subset F , F ⊂ S, is said a flat of Aff (S) [or Aff (S)] if rank(F ) <

rank(F∪{s}) for all s, s ∈ S\F . The flats of rank 1,2, and corank 1 are called
points, lines and hyperplanes of the matroid Aff (S), respectively. Suppose
rank(S) = d + 1. [This restriction is not a handicap; we can reduce the
general case to this case.] The affine subspace H = 〈H〉 of Rd generated
by the elements of the hyperplane H of the matroid Aff (S) is an affine
hyperplane of Rd. For every affine hyperplane H of this type we choose a
positive H+ and and negative H− halfspaces. Thus, the hyperplane H of
Aff (S) determines a pair of opposite signed sets:

C∗ := ( (C∗)+ = {x : x ∈ {S\H}∩H+}; (C∗)− = {x : x ∈ {S\H}∩H−} )

and − C∗ := ((−C∗)+ = (C∗)−; (C∗)− = (C∗)+).

We say that {C∗,−C∗} is a pair of opposite signed cocircuits determined
by the set S, S ⊂ Rd \ {0}. The underlying set C∗ = C+ ∪ C− = S \ H

is called the support of the opposite signed cocircuits C∗, −C∗. Let C∗ be
the collection of all signed cocircuits determined by the point set S. The
oriented matroid Aff (S) can be also encoded by the pair (S, C∗). Indeed the
sets C and C∗ satisfy the orthogonality property :

(∗∗∗) For all C ∈ C and C∗ ∈ C∗ such that |C ∩ C∗| ≥ 2, both the sets
{C+ ∩ (C∗)+} ∪ {C− ∩ (C∗)−} and {C+ ∩ (C∗)−} ∪ {C− ∩ (C∗)+}
are non-empty.

C [resp. C∗] is the set of minimal signed subsets of S satisfying (∗∗∗) relatively
to the set C∗ [resp. C], and (C∗)∗ = C. The pair (S, C∗) is also a new
rank (n − r) oriented matroid called the orthogonal or dual of Aff (S) and
denoted (Aff (S))∗ or A∗

ff (S). The restriction of Aff (S) to the ground set
S \ {s} is denoted by Aff (S) \ s. Set Aff (S)/s := (A∗

ff (S) \ s)∗. We say

5



that Aff (S)/s is the contraction of Aff (S) by the element s. Note that
(Aff (S) \ s) \ s′ = (Aff (S) \ s′) \ s and for all s, s′ ∈ S.

The notion of “oriented matroid” can be axiomatized (see [3, Definition
3.2.1]). Thus, we obtain a general class, where there are many oriented
matroids non-realizable, i.e., non-isomorphic to matroids of type Aff (S), see
[3]. For many combinatorial purposes the class of all oriented matroids can
be seen as an useful completion of the class of realizable oriented matroids.
In particular the class of all oriented matroids is closed for the important
operation of “local perturbation” (see [3] for details).

A [convex] d′-polytope is the ordinary convex hull of a finite subset of Rd

whose affine dimension is d′. The matroidal analogue notion is the concept of
“matroid polytope.” Consider an acyclic oriented matroid M, i.e., suppose
that all its signed circuits have positive and negative elements. A facet of M
is a hyperplane H [of M] such that S(M) \ H supports a positive cocircuit
of M, i.e., a cocircuit whose negative part is empty. A face is an intersection
of facets, i.e., a subset F of S such that S \ F is a union of [the support
of] positive cocircuits of M. The collection of all faces of M ordered by
inclusion is a finite lattice, Fac(M), called the (Las Vergnas) face lattice of
M. Note that rank(M) = rank(Fac(M)), and the face lattice Fac(M) has
two improper faces: ∅ and [the ground set] S(M).

Let P be a d-polytope of dimension in Rd, and let V := vert(P) be its
vertex set. Consider the [realizable] matroid polytope of the affine depen-
dencies of its vertex set AffAffAff (V ). Note that there is a natural isomorphism
φ : Fac(P) → Fac(AffAffAff (V )), F �→ φ(F ) := vert(F ). For this reason, an
acyclic oriented matroid M such that all the elements of S(M) are vertices
(i.e., rank 1 faces) of the face lattice Fac(M) will be called a matroid poly-
tope. The oriented matroids that are also matroid polytopes will be denoted
by a bold symbol.

Let S,S ′ be two finite subsets of Rd. We say that S and S ′ are ge-
ometrically equivalent, or have the same geometrical type, if the oriented
matroids Aff (S) and Aff (S ′) are isomorphic. We say that two matroid poly-
topes M and M′ are combinatorially equivalent, or have the same com-
binatorial type, if the corresponding face lattices are isomorphic. Suppose
that the “reorientation on A of [all the signed circuits of] M,” denoted by

AM, is also a matroid polytope. The partition {A, S \ A} of the ground
set S(M) is called a non-Radon partition [relative to M] of the ground
set S. [The “reorientation on A” of the signed circuit C is the signed set

AC := ((AC)+ = {C+ \ A} ∪ {A ∩ C−}; (AC)− = {C− \ A} ∪ {A ∩ C+}).
The concept of “reorientation” is the matroidal analogue of the notion of
“nonsingular projective permissible transformation,” for details see for ex-
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ample [22]. Note that we have AM =
S\A

M, for every oriented matroid
M = (S, C).] We observe that if M = AffAffAff (S) then the two notions of
non-Radon partition here defined, coincide. With the language of primitive
Radon partitions, Marilyn Breen [5] has observed:

Proposition 2.1 ([5]). The combinatorial type of a polytope is determined
by its geometrical type.

The next results extend to matroid polytopes similar theorems of [5].

Proposition 2.2 ([25]). Consider a matroid polytope M = (S, C) and let
F be a subset of the ground set S. Then the following two assertions are
equivalent:

• F is a face of M.

• For all signed circuits C ∈ C, C+ ⊂ F =⇒ C− ⊂ F .

A rank r matroid M is called uniform if its independent sets are exactly
those subsets of the ground set S(M) whose cardinal is at most r. A matroid
polytope M is called simplicial if every of its faces F , F 
= S(M), is an
independent set. From Proposition 2.2 we conclude:

Corollary 2.3. Let M be a simplicial matroid polytope. Let F be a proper
subset of the ground set S(M). The following three assertions are equiva-
lent:

• F is a face of M.

• {A, S \ A} is a non-Radon partition of S, for every A ⊂ F .

• C+ 
⊂ F , for every signed circuit C of M.

Even for uniform matroid polytopes combinatorial equivalence does not imply
geometrical equivalence.

3 Alternating orientations and d-th cyclic curves

Set [n] := {1, 2, . . . , n} for every n ∈ N+, and set [0] := ∅. When necessary
we consider also [n] as the linear ordered set {1 < 2 < · · · < n}. Let Ur([n])
be the rank r uniform matroid on the ground set [n]. It is well known [4,
Corollary 3.9.1] that an alternating orientation C of the circuits of Ur(n)
can be associated with the linear ordered set [n]:
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• Every circuit C = {i1 < · · · < ir+1} of Ur(n) is the support of a pair
of opposite signed circuits, C,−C of C, determined by the signature
sg

C
(ij+1) = −sg

C
(ij), j ∈ [r].

The oriented matroid so obtained, Ar([n]) := ([n], C), is called the alter-
nating oriented [uniform] matroid of rank r on the linear ordered set [n].
Notice that Ar([n]) is a matroid polytope if r ≥ 3. Properties of alternating
oriented matroid have a nice simple translation in terms of basis orientation.
A basis orientation of an oriented matroid M = (S, C) is a mapping χ of the
set of ordered bases of M to {−1, 1} satisfying the following two properties:

• χ is alternating.

• For any two linear ordered bases B1 = {a ≺ s1 ≺ · · · ≺ sr} and
B2 = {b ≺ s1 ≺′ · · · ≺′ sr}, a 
= b, of M, we have χ(B1) =
−sg

C
(a)sg

C
(b)χ(B2), where C denotes one of the two opposite signed

circuits of M such that a, b ∈ C ⊂ B1 ∪ {b} = B2 ∪ {a}.

If χ(B) = 1 we say that B is a positive basis of M. Note that the map χ′

of the linear ordered bases of Aff(S), B �→ χ′(B) = sign (det(B)) is a basis
orientation of Aff(S).

Proposition 3.1 ([4]). A rank r, r ≥ 1, uniform oriented matroid Ur(S) is
an alternating oriented matroid if and only if, for some linear ordering S≺
of the ground set S, every ordered basis B≺, B≺ ⊂ S≺, is positive.

The geometrical type of the standard cyclic polytopes are the alternating
oriented matroid polytopes. More precisely we have:

Theorem 3.2 ([4, 6]). Consider the points γ(t1), . . . , γ(tn), t1 < · · · < tn,
n > d > 2, of the moment curve γ : R → Rd, t �→ γ(t) = (t, t2, . . . , td).
Then

AffAffAff ({γ(t1)), γ(t2), . . . , γ(tn)}) = AAAd+1({γ(t1) ≺ γ(t2) ≺ · · · ≺ γ(tn)}).

Proof. Breen’s proof [6] uses Gale’s evenness criterion (see Proposition 4.2
below). In fact, as suggested in [4], an effective simple calculus using Van-
dermonde’s determinants suffices: from the definitions we know that the
matroid AffAffAff ({γ(t1), γ(t2), . . . , γ(tn)}) is a uniform matroid of rank d + 1.
Let C = {γ(ti1), . . . , γ(tid+2

)}, ti1 < · · · < tid+2
, be the support of one of its

signed circuits C. The calculus of the coefficients λ1, . . . , λd+2 of an affine
combination,

j=d+2∑
j=1

λjγ(tij) = 0 with
j=d+2∑

j=1

λj = 0,
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shows that λi+1 and λi have opposite signs for every i ∈ [d + 1]. Hence the
conclusion follows.

Lemma 3.3 (Signature Lemma). Let C [resp. C∗] be the set of signed
circuits [resp. cocircuits] of an oriented uniform matroid Ur([n]). Suppose
that one the following two conditions is verified:

• If C ∈ C and i, i + 1 ∈ C, then sg
C
(i + 1) = −sg

C
(i), for all

i ∈ [n − 1].

• If C∗ ∈ C∗, and i, i + 1 ∈ C∗, then sg
C∗ (i + 1) = sg

C∗ (i), for all
i ∈ [n − 1].

Then Ur([n]) is the alternating oriented matroid Ar([n]).

Proof. It is well known that given any circuit C of a matroid M = (S, C)
and two elements a, b, a 
= b, a, b ∈ C , there is a cocircuit C∗ of M such
that C ∩ C∗ = {a, b}, see for example [3, Lemma 3.4.2]. Thus, by the or-
thogonality property (∗∗∗), the assertions relative to circuits and to cocircuits
are equivalent. We establish the lemma for circuits, proving that, for every
signed circuit C with support C = {i1, . . . , ir+1}, i1 < · · · < ir+1, and for
every pair of natural numbers p, q, 1 ≤ p < q ≤ r + 1, we have

(3.3.1) sg
C
(iq) = (−1)q−psg

C
(ip).

We use induction on iq − ip. If iq = ip +1, equation (3.3.1) is the hypothesis.
Suppose iq−ip > 1 and that (3.3.1) is true for all the integers ip′ and iq′ such
that 1 ≤ iq′−ip′ < iq−ip. If p+1 < q, there is sip+1 ∈ C such that ip < ip+1 <

iq ; then the result follows by the induction hypothesis. Now suppose q =
p+1. Let j be some element of S \C with ip < j < ip+1. Let C′ [resp. C′′] be
the signed circuit of Ur([n]) supported by {C\{ip}}∪{j} [resp. {C′′\{ip+1}}∪
{j}]. By induction hypothesis sg

C ′ (ip+1) = −sg
C ′ (j) and sg

C ′′ (j) = −
sg

C ′′ (ip). Hence, by the signed elimination property, sg
C
(ip+1) = − sg

C
(ip).

Let us give two consequences of Signature Lemma 3.3.

Corollary 3.4 ([4]). Let C∗ be the set of signed cocircuits of the rank r
alternating oriented matroid Ar([n]). Set E := {i ∈ [n] : i even}. Then

E C∗ := {E C∗ : C∗ ∈ C∗} is the set of the signed circuits of the rank (n− r)
alternating oriented matroid An−r([n]).

Proof. Let C∗ be a signed cocircuit of Ar([n]). Set C∗ = {i1, . . . , in−r+1},
i1 < · · · < in−r+1. Applying (3.3.1) and the orthogonality property (∗∗∗) we
obtain, for every pair of integers p, q, 1 ≤ p < q ≤ n − r + 1:
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(3.4.1) sg
C∗ (iq) = (−1)(q−p)+(iq−ip)sg

C∗ (ip).

We have (−1)iq−ip = −1 if and only if exactly one of the numbers ip, iq is
even. Hence Corollary 3.4 follows.

Corollary 3.5. Let P be a d-polytope in Rd, d ≥ 2. Then P is geomet-
rically equivalent to the alternating oriented matroid [polytope] AAAd+1([n]) if
and only if its vertex set V fulfills both the conditions:

(3.5.1) No affine hyperplane H in Rd meets V in more than d points.

(3.5.2) There is a linear ordering V≺ := {vi1 ≺ vi1 ≺ · · · ≺ vin} of the
elements of V such that no affine hyperplane H in Rd, affine
hull of d points of V , separates strictly vik from vik+1

, for every
k ∈ [n − 1].

Proof. The conditions are trivially necessary. We prove that they are suffi-
cient. From (3.5.1) we conclude that AffAffAff (V ) is a matroid uniform of rank
d+1. Pick k ∈ [n−1]. Let C∗ be a signed cocircuit of AffAffAff (V ). Then V \C∗

is a set of d elements. From (3.5.2) we know that sg
C∗ (vik) = sg

C∗ (vik+1
), if

vik , vik+1
∈ C∗. From Lemma 3.3 we conclude the isomorphism of oriented

matroids AffAffAff (V ) ∼= AAAd+1([n]), vi �→ i, i ∈ [n].

The next Proposition answers a question implicitly raised in [22].

Proposition 3.6. Let α : R → Rd, t �→ α(t) = (α1(t), . . . , αd(t)) be a
parameterized curve. Then α is a d-th cyclic curve if and only it is a d-th
order curve.

Proof. If α is a d-th cyclic curve then it is clear that it is also a d-th order
curve. To prove the converse assertion, let us consider an arbitrary set of
n, n ≥ d+1, points α(t1), . . . , α(tn) on the d-th order curve α. We suppose
t1 < t2 < · · · < tn. No affine hull of d of those points can separate strictly
two points of the form α(tk) and α(tk+1) for any k ∈ [n − 1] ; otherwise
such hyperplane would contain α(t) for some t ∈ R, tk < t < tk+1. Then
AffAffAff({α1(t), . . . , αd(t)}) = AAAd+1({α1(t) ≺ · · · ≺ αd(t)}) is a cyclic matroid
polytope, by Theorem 3.2 and Corollary 3.5. So α is also a cyclic curve, as
required.

The following “existence theorem” of Bernd Sturmfels, is closely related with
ours results and must be mentioned.
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Theorem 3.7 ([37]). Let V be a finite subset of Rd, d ≥ 2, of at least d+1
points, and suppose that there is a linear ordering V≺ such that AAAd+1 (V≺)
is an alternating oriented matroid polytope. Then V is on a d-th order
curve.

The next result, a generalization to Rd of the classical “Ramsey type
theorem” of Erdős and Szekeres [18]; see Grünbaum [22, Exercise 7.3.6] and
Duchet and Roudneff [15] (cf. [3, Proposition 9.4.7]).

Corollary 3.8 ([15]). For every natural number d, d ≥ 2, there is a natural
number N (d) that every set of N (d) points in general position in Rd con-
tains the vertices of a cyclic polytope of dimension d. Moreover, the cyclic
polytopes are the unique geometrical class of polytopes with this property.

Proof. Choose a linear ordered set of points N≺, in general position in Rd

and fix an orientation of Rd. A linear ordered (d + 1)-subset S≺, S≺ ⊂ N≺,
is colored blue or red depending on the sign of S≺, viewed as an oriented
d-simplex in Rd. If N is large enough, then N≺ contains a linear ordered
n-subset V≺ whose linear ordered (d + 1)-subsets are colored the same, by
Ramsey theorem. From Proposition 3.1 and Theorem 3.2 we conclude that
AAAd+1 (V≺) = AffAffAff(V ) is a cyclic polytope. This proves the first assertion. The
last assertion follows from the observation that all subpolytopes of cyclic
polytopes are also cyclic polytopes.

Obviously, every submatroid of an alternating oriented matroid is again an
alternating oriented matroid with respect to the induced linear order. More
generally, passing to matroid minors can be handled as follows.

Corollary 3.9 ([4]). For every pair of natural numbers {n, r}, n > r ≥ 1,
and every i ∈ [n], we have the equalities:

(3.9.1) Ar([n]) \ i = Ar({1 < 2 · · · < î < · · · < n}) and

(3.9.2) Ar([n]) / i =
[i−1]

Ar−1({1 < 2 · · · < î < · · · < n}) =

= {j: i<j≤n} Ar−1({1 < 2 · · · < î < · · · < n}).
Proof. The Equality (3.9.1) is clear. Set E := {j ∈ [n] : j even} and
E ′ := {j ∈ [i − 1] : j even}

⋃
{j : j odd, i < j ≤ n}. By the orthogonality

property (���), and using Corollary 3.4 we have

(Ar([n]) / i)∗ = A∗
r([n]) \ i = EAn−r({1 < · · · < î < · · · < n}).

Applying Corollary 3.4 again, we obtain

Ar([n]) / i = ((Ar([n]) / i)∗)∗ =
E

′ (E Ar−1({1 < · · · < î < · · · < n})),
which is the Equality (3.9.2).
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4 Cyclic matroid polytopes: facial structure

In order to describe in a matroidal way the facial structure of Cd(t1, . . . , tn),
we introduce some terminology. The matroid polytopes combinatorially
equivalent to the alternating oriented matroids of rank r, r ≥ 3, are called
cyclic matroid polytopes. We will denote Cmr(S) a rank r cyclic ma-
troid polytope on the ground set S. We remember that a linear ordering
S≺ := {s1 ≺ s2 ≺ · · · ≺ sn} of the elements of S is an admissible order-
ing for Cmr(S), if Fac(Cmr(S)) = Fac(AAAr({s1 ≺ s2 ≺ · · · ≺ sn})). In
the following we suppose that the natural ordering {1 < 2 < · · · < n} is
an admissible order for the matroid polytope Cmr([n]). Generalizing sim-
ilar concepts for polytopes, we say that a matroid polytope M is said to
be k−neighborly if every subset of k points of the ground set S(M) is a
proper face of M. A rank r matroid polytope M is called neighborly if
it is �(r − 1)/2�−neighborly. The proof of the following Proposition easily
follows from the definitions and Proposition 2.2, and it is omitted.

Proposition 4.1. A matroid polytope M is k-neighborly if and only if
|C+| ≥ k+1 for all signed circuits C of M. A rank 2k+1 matroid polytope
M is neighborly if and only if M is uniform and |C+| = |C−| = k + 1 for
every signed circuit C of M.

We present a matroidal version of Gale’s evenness criterion:

Proposition 4.2 (Gale’s evenness criterion for facets, [21]). Let n
and r be two integers with n > r > 2. Then a (r−1)−subset F , F ⊂ [n], is
a facet of the alternating matroid polytope AAAr([n]) if and only if every two
elements of [n] \ F are separated on [n] by an even number of elements of
F .

Proof. Put [n] \F = {i1 < · · · < ip · · · < iq < · · · < in−r+1}. The number of
elements of F between ip and iq is iq − ip − (q− p). F is a facet of AAAr([n]) if
and only if [n] \ F supports a positive cocircuit C�. From Equation (3.4.1)
we know that ip and iq have the same sign in C� if and only if iq−ip−(q−p)
is even. Hence the proposition follows.

Shephard [36] gives an extension of Gale’s criterion to faces of any dimension.
Fix a subset W of the linear ordered set [n]. A subset X ⊂ W will be called
a contiguous subset of W if there is a pair {i, j}, 1 < i ≤ j < n, such that
X = {i < i + 1 < · · · < j − 1 < j}, and i − 1, j + 1 
∈ W . X is said to be
even [resp. odd ] when |X | is even [resp. odd].
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Corollary 4.3 (Gale’s evenness criterion for faces, [36]). Consider
the alternating matroid polytope AAAr([n]), and suppose n > r > 2. Then a
k-element subset W of [n], 1 ≤ k ≤ r − 1, is a face of rank k of AAAr([n]), if
and only if W admits at most r − 1 − k odd contiguous subsets.

Proof. The result easily follows from Gale’s criterion and from the next
simple lemma whose proof is left to the reader.

Lemma 4.4. Let W be a k-element subset of [n]. Let m be the number of
odd contiguous subsets of W . Then there is a (k + m)-element subset F of
[n] containing W and such that every contiguous subset of X is even.

An immediate consequence of Corollary 4.3 is:

Corollary 4.5 ([28]). Any cyclic matroid polytope is simplicial and neigh-
borly.

Remark that Corollary 4.5 is also a simple consequence of Corollary 3.6 and
Theorem 3.2.

Let us now examine the role of vertices in the face lattice of cyclic [ma-
troid] polytopes. Suppose that H is an affine hyperplane of Rd separating
strictly the vertex v ∈ vert(P) of the other vertices of P . The face lattice of
the polytope H ∩ P does not depend on the choice of H, and is called the
combinatorial vertex-figure of P at v. The combinatorial vertex-figure P at
v is isomorphic to the interval [v, P] in the face lattice Fac(P). It is not
difficult to see that the combinatorial vertex-figure of P at v is isomorphic to
the face lattice Fac(AffAffAff (V )/v), where V is the vertex set of the polytope P .
More generally we say that the combinatorial vertex-figure of the matroid
polytope M at s ∈ S(M) is the face lattice Fac(M/s) (or equivalently is
isomorphic to the interval [s, S] in the face lattice Fac(M)).

Proposition 4.6. If r is even [resp. odd] the combinatorial vertex-figure of
Cmr([n]) at i, i ∈ {1, n} [resp. i ∈ [n]], is isomorphic to the [face] lattice
Fac(Ar−1([n − 1])).

Proof. It suffices to consider the case Cmr([n]) = AAAr([n]). It is clear that
the acyclic oriented matroid

[i−1]
Ar−1({1 < · · · < î < · · · < n}) coincides

with Ar−1({i + 1 ≺ · · · ≺ n ≺ 1 ≺ · · · ≺ i− 1}). Thus the proposition is a
consequence of Corollary 3.9.
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Proposition 4.6 shows the strong regularity of cyclic matroid polytopes of
odd rank. The special role of the vertices in the case of even rank will
be illustrated by the construction of cyclic matroid polytopes of even rank
proposed in the next section.

5 Cyclic matroid polytopes: New results

We say that matroid polytope M is rigid if its face lattice Fac(M) deter-
mines M.

Theorem 5.1 (Cyclic matroid polytopes of odd rank). The cyclic
matroid polytopes of odd rank are rigid. More precisely the geometrical type
of Cm2k+1([n]), k ≥ 1, is AAA2k+1([n]).

Note that Theorem 5.1 is a particular case of the following remarkable result
of Ido Shemer [34] (see [3, Theorem 9.4.13] for a matroidal proof):

Theorem 5.2 ([34]). Every neighborly rank 2k + 1 [matroid] polytope is
rigid.

We present here a short direct proof of Theorem 5.1.

Proof. The case n = 2k + 1 is trivial. We suppose n > 2k + 1 ≥ 3.
We know that Cm2k+1([n]) is neighborly, see Corollary 4.5 above. From
Proposition 4.1 we conclude that Cm2k+1([n]) is a uniform matroid and
|C+| = |C−| = k+1 for every signed circuit C ∈ C(AAA2k+1([n])). Let F be the
set of facets of Cm2k+1([n]). The Gale’s criterion can be stated as follows
(see Corollary 4.3):

• F ∈ F if and only if every contiguous subset X of F is even.

Suppose there are consecutive elements i and i+1 contained in a positive part
of a signed circuit C+. Then the number of odd contiguous subsets of C+ is
at most |C+|−2 = k−1. From Corollary 4.3 we conclude that C+ is a face of
Cm2k+1([n]), a contradiction with Corollary 3.4. Thus, sg

C
(i) = −sg

C
(i+1)

for every i ∈ [n − 1] and every signed circuit C, C ∈ C(Cm2k+1([n])), such
that i, i + 1 ∈ C. Then the equality Cm2k+1([n]) = AAA2k+1([n]) follows from
the Signature Lemma 3.3.

We remark that for even rank, only a partial structure theorem holds. In
particular there are non-realizable rank 2k cyclic matroid polytopes. Two
elements s, s′, s 
= s′, of the ground set S of an oriented matroid M are said
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to form a sign-invariant pair, or shortly an invariant pair, if s and s′ have
always the same sign or always the opposite sign in all the signed circuits of
M containing them. In the first case the pair {s, s′} is called covariant, in
the latter contravariant. Note that a covariant [resp. contravariant] pair of
M is a contravariant [resp. covariant] pair of M∗. The inseparability graph
of M [32] (invariance graph in [11]) is the graph, IG(M), on the vertex set S
whose edges are all the invariant pairs of M. Observe that the inseparability
graph IG(M) is invariant under orthogonality and reorientations: IG(M) =
IG(M∗) = IG(XM) for all X ⊂ S.

Remark 5.3. Let P be a neighborly polytope of dimension 2k ≥ 4. Let V
be its vertex set. Then the following two notions are equivalent (we leave
the proof to the reader):

• {s, s′} is contravariant pair of the affine matroid polytope AffAffAff (V ).

• Set conv(s, s′) = �. Then P/� is a neighborly polytope of dimension
2k − 2 on a vertex set V ′ with |V | − 2 elements: i.e., � is an universal
edge of the polytope P , in the notations of Ido Shemer [34].

Theorem 5.4 (Cyclic matroid polytopes of even rank). A rank 2k,
k ≥ 2, matroid polytope M, on a ground set S(M) with n, n ≥ 2k + 2,
elements is a cyclic matroid polytope if and only if there is a covariant pair
{s, s′} of M such that both the contractions M/s and M/s′ are cyclic
matroid polytopes.

Proof. Let us begin with the “only if” part: let M = (S, C) be a rank 2k

cyclic matroid polytope with admissible ordering S≺ := {s = s1 ≺ · · · ≺
sn = s′}. Then both M/s and M/s′ are rank 2k − 1 cyclic matroid poly-
topes by Proposition 4.6. To obtain a contradiction suppose that {s, s′} is
not a covariant pair: i.e., there is a signed circuit C ∈ C such that s1 ∈ C+,
and sn ∈ C−. As |C| = |C+| + |C−| ≤ 2k + 1, we have necessarily |C+| ≤ k
or |C−| ≤ k. If we have |C+| ≤ k [resp. |C−| ≤ k], then the set C+ \ {s1}
[resp. C− \ {sn}], of size k− 1 would be a face of the rank 2k− 1 neighborly
matroid polytope M/s [resp. M/s′]; consequently C+ [resp. C−] would
also be a face of the simplicial matroid polytope M, a contradiction with
Corollary 3.4. We conclude that {s, s′} is a covariant pair.

We will prove the “if part” of the theorem. Let H be a facet of M.
As {s, s′} is a contravariant pair of the dual oriented matroid M∗ we have
H ∩ {s, s′} 
= ∅. Observing that both the matroids M/s and M/s′ are
uniform (see Theorem 5.1) it follows that rank(H) = |H |, and hence M
is a simplicial matroid polytope. Any rank 2k − 2 face of M is contained
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in exactly two facets. Therefore the substitution s ↔ s′ maps a facet to
a facet, so Fac(M/s) ∼= Fac(M/s′). Let us denote by si, i ∈ [n − 1], the
vertex of M/s corresponding to the line ssi joining s and si. Every cyclic
permutation of an admissible ordering of odd rank cyclic matroid polytope
is also an admissible order, by the Gale’s evenness criterion. Then there
is an admissible order S≺ = {si1≺ · · ·≺ sin−1 = s′} of the vertices of the
rank 2k − 1 cyclic matroid polytope M/s. The reader can easily check
that the facets of M satisfy the Gale’s criterion relatively to the ordering
S≺ = {s ≺ si1 ≺ · · · ≺ sin−2 ≺ s′}. So M is a cyclic matroid polytope, as
required.

Corollary 5.5. The contraction Cm2k([n])/i, i ∈ [n], is a cyclic matroid
polytope if and only if i ∈ {1, n}. Furthermore the cyclic matroid polytope
Cm2k([n]), n ≥ 2k+2 ≥ 4, has a unique covariant pair {1, n}. This elements
are necessarily the extrema of any admissible ordering.

Proof. We claim that if S≺ = {j1 ≺ · · · ≺ jn} is an admissible ordering
for Cm2k([n]) then Cm2k([n])/i, i ∈ [n], is a cyclic matroid polytope if and
only i ∈ {j1, jn}. By hypothesis Cm2k([n]) is combinatorially equivalent to
AAA2k(S≺), i �→ ji. From Equality 3.9.2 we known that:

• Cm2k([n])/1 is combinatorial equivalent to the alternating oriented
matroid AAA2k(S≺)/j1 = AAA2k−1({ĵ1 ≺ j2 ≺ · · · ≺ · · · ≺ jn}).

• For every i, 2 ≤ i ≤ n, Cm2k([n])/i is combinatorially equivalent to

AAA2k(S≺)/ji = {j1,... ,ji−1}AAA2k−1({j1 ≺ · · · ≺ ĵi ≺ · · · ≺ jn}).

By Theorem 5.1 {j1,... ,ji−1}AAA2k−1({j1 ≺ · · · ≺ ĵi ≺ · · · ≺ jn}), where 2 ≤
i ≤ n, is a cyclic matroid polytope if and only if is an alternating oriented
matroid, hence if and only if i = n. Then Corollary 5.5 is a consequence of
Theorem 5.4.

Proposition 5.6. A rank 2k, k ≥ 2, simplicial matroid polytope M is a
cyclic matroid polytope if and only if it has a covariant pair {s, s′} such that
the contraction M/s is a cyclic matroid polytope.

Proof. The proof is similar to that of Theorem 5.4 and left to the reader.

Admissible orderings of cyclic matroid polytopes Cmr([n]) are characterized
in the next theorem. The cases n = r, r + 1 are trivial and omitted. As the
matroid polytopes Cmr([n]) and AAAr([n]) are combinatorially equivalent we

16



can reduce our study to the admissible orderings of alternating oriented
matroid polytopes.

We define a graph G(n ; r), called the Gale graph of AAAr([n]), whose vertex
set is [n], and such that the pair {i, j} ∈ [n] × [n] is an edge if and only if
the elements i and j are consecutive for some admissible ordering of AAAr([n]).
We say that the hamiltonian path [i1, i2, . . . , in] of the Gale graph G(n ; r)
determines the linear ordering {i1 ≺ i2 ≺ · · · ≺ in}.

Theorem 5.7 (Admissible orderings of cyclic matroid polytopes).
(5.7.1) The Gale graph G(n ; 2k+1), n > 2k+2 > 3, is the hamiltonian cycle

[1, . . . , n, 1]. AAA2k+1([n]) has 2n admissible orderings determined by
the 2n hamiltonian paths of G(n ; 2k + 1).

(5.7.2) The Gale graph G(n ; 2k), n > 2k + 1 > 3, is the union of the two
cycles [2, 3, . . . , n, 2] and [1, 2, . . . , n−1, 1]. AAA2k([n]) has 4 admissible
orderings determined by the 4 hamiltonian paths of G(n ; 2k) whose
extrema are the elements 1 and n.

Proof. A facet F of Fac(AAA2k+1([n])) is said to be a special facet when there
are exactly two elements h1, h2 ∈ [n] \ F such that, for every f ∈ F , either
F \ {f} ∪ {h1} or F \ {f} ∪ {h2} is again a facet of Fac(AAA2k+1([n])). It
is straightforward to prove that there are exactly n special facets: Fi :=
{i, . . . , i+2k}, (mod n), i ∈ [n]. The set of special facets of Fac(AAA2k+1([n]))
does not depend on the admissible ordering of AAA2k+1([n]). Then the unique
admissible orderings of AAA2k+1([n]) are of type {ω(1) ≺ω · · · ≺ω ω(n)} where
ω denotes a circular permutations of {1, 2, . . . , n}. We conclude also that
the Gale graph G(n ; 2k + 1) is the hamiltonian cycle [1, 2, . . . , n, 1].

From Corollary 5.5 we know that the elements 1 and n are the extrema
of any admissible ordering of AAA2k([n]) and the contractions AAA2k([n])/1 and
AAA2k([n])/n are cyclic matroid polytopes. As n > 2k+1 ≥ 5, we have (n−1) >
2(k−1)+1 ≥ 3. Making use of the case (5.6.1) relatively to the cyclic matroid
polytope AAA2k([n])/1 we know that the hamiltonian paths of the cycle [2,3,
. . . ,n,2] determine the admissible orderings of AAA2k([n])/1. From these data
and making use of Gale’s criterion, we conclude that {i1 ≺ · · · ≺ in−1 = n}
[resp. {n = i1 ≺ · · · ≺ in−1}] is an admissible ordering of AAA2k([n])/1 if
and only if {1 ≺ i1 ≺ · · · ≺ in−1 = n} [resp. {n = i1 ≺ · · · ≺ in−1 ≺ 1}]
is an admissible ordering of AAA2k([n]). A similar result holds to AAA2k([n])/n.
We conclude that the Gale graph G(n ; 2k) is the union of the two cycles
[1, 2, . . . , n− 1, 1] and [2, 3, . . . , n, 2].

From Theorem 5.4 it is possible to construct the geometrical types of all
cyclic polytopes with even rank (see Remark 5.12 below for the realizable
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case). However it is not clear, at this stage, whether there are non-realizable
cyclic matroids of even rank. The following result of Richter & Sturmfels
settles the question.

Theorem 5.8 ([31]). There is a non-realizable rank 4 cyclic [uniform] ma-
troid polytope with 10 vertices. A rank 2k cyclic matroid polytope is realiz-
able if every minor by deletion is cyclic.

We give two results that emphasize the very special place of alternating
oriented matroids among realizable cyclic matroid polytopes of even rank.

Theorem 5.9. Let M be a matroid polytope of even rank 2k, k ≥ 2, on a
ground set S with n, n ≥ 2k + 2, elements. Then the following properties
are equivalent:

(5.9.1) M= AAA2k(S≺) for some linear ordering S≺ of the elements of S.

(5.9.2) M is a cyclic uniform matroid polytope and its inseparability graph
is a hamiltonian cycle.

(5.9.3) For some element s ∈ S, both matroids M \ s and M/s are alter-
nating oriented matroid with respect to the same linear ordering of
S \ {s}.

We make use of the following Proposition.

Proposition 5.10 ([11]). Let Ur = (S, C) be a rank r oriented uniform
matroid on a ground set S with n, n ≥ r+2 ≥ 4, elements. The inseparability
graph IG(Ur) is either a hamiltonian cycle or a disjoint union of k, k ≥
2, paths. IG(Ur) is a hamiltonian cycle if and only if there is a linear
ordering of the elements of S, say S≺ := {s1 ≺ · · · ≺ sn}, such that Ur is
a reorientation of Ar(S≺). Otherwise Ar(S≺), n ≥ r + 2 ≥ 4, is the only
oriented uniform matroid whose inseparability graph possesses a hamiltonian
path [s1, s2, . . . , sn] where all edges are contravariant.

Proof. Implications (5.9.1) =⇒ (5.9.2), (5.9.3) are trivial.
We will prove (5.9.2) =⇒ (5.9.1). From Corollary 5.5 we know that M
has exactly one covariant pair {s, s′} and these elements are the extrema of
any admissible ordering of M. Suppose that [s1 = s, s2, . . . , sn = s′, s] is a
hamiltonian cycle of the inseparability graph of M. We know that the pairs
{si, si+1}, i ∈ [n−1], are necessarily contravariant. Then the inseparability
graph IG(M) possesses the hamiltonian path s1, s1, . . . , sn where all edges
are contravariant and the implication follows from Proposition 5.10.
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We will prove (5.9.3) =⇒ (5.9.2). Since both M/s and M \ s are uniform
matroids, M is also uniform. Let {s1 ≺ · · · ≺ sn−1} be an ordering of
S \{s}, with respect to which both M/s and M\s are alternating oriented
matroids. Then, for every i, i ∈ [n−2], the pair {si, si+1} is a contravariant
pair of M. We claim that the existence of a chain of length n−2 in IG(M)
implies that this graph is a hamiltonian cycle. Indeed the element s can not
be an isolated vertex from a result of Roudneff [32] (see also [3, Theorem
7.8.6]). From Proposition 5.10 we conclude that IG(M) is a hamiltonian
cycle. To finish the proof it is enough to see that one of the pairs {s, s1} or
{s, sn−1} is contravariant and the other covariant. Suppose for a contradic-
tion that both the pairs are covariant or contravariant. Then {s1, sn−1} is
a covariant pair of both the alternating oriented matroid M \ s and M/s.
From Equation (3.3.1) we know that sg

C
(s1) = (−1)rsg

C
(sn−1), [resp.

sg
C′ (s1) = (−1)(r−1)sg

C′ (sn−1)] for every signed circuit C of M\s, [resp. C′

of M/s] such that s1, sn−1 ∈ C [resp. s1, sn−1 ∈ C′], a contradiction.

Proposition 5.11. For any pair of integers {n, k}, n ≥ 2k+3 ≥ 7, there is
a rank 2k matroid polytope M with n elements and the following properties:

• M is a realizable cyclic uniform matroid polytope but not an alternat-
ing oriented matroid.

• All proper submatroids of M are cyclic uniform matroid polytopes.

Proof. Consider the alternating oriented matroid AAA2k([n−1]), where n−1 ≥
2k + 2 ≥ 6. Consider the basis B = {1, 2, n− 2(k − 1), n− 2k + 1, n− 1} of
AAA2k([n−1]). Set B≺ := {1 ≺ 2 ≺ n−1 ≺ n−2 ≺ n−3 ≺ · · · ≺ n−2(k−1)}.
Let M be the [realizable] rank 2k uniform oriented matroid on the ground
set [n] determined by the following rules:

• M is a single element extension of AAA2k([n − 1]).

• Let C∗
n be the set of signed cocircuits of M containing the element

n. If C∗ ∈ C∗
n, then ((C∗)+ \ {n}; (C∗)− \ {n})) is a signed cocircuit

of AAA2k([n − 1]).

• sg
C∗ (n) = (−1)j sg

C∗ (ij) if ij is the smallest element of B≺ that
occurs in C∗ and the j-th element of B≺.

It is clear that there is a positive signed cocircuit of M supported by
{2, 3, 2k+2, . . . , n}. Then M is an acyclic oriented uniform matroid. Propo-
sition 5.11 results of the following statements (the straightforward proofs are
left to the reader):

19



(5.11.1) M \ 1 = AAA2k({1̂ < 2 < · · · < n}).

(5.11.2) M \ n = AAA2k([n− 1]).

(5.11.3) M/1 = AAA2k({3 ≺ 4 ≺ · · · ≺ n − 1 ≺ 2 ≺ n}).

(5.11.4) M/n = AAA2k({1 ≺ 3 ≺ 4 ≺ · · · ≺ n − 1 ≺ 2)}.

(5.11.5) MMM is not an alternating oriented matroid.

Remark 5.12 (Realizable cyclic matroid polytopes of rank 2k).
Assuming n ≥ 2k+3 ≥ 5, we choose a 2k dimensional cyclic polytope Po in
R2k with vertex set V = {v2, v3, . . . , vn−1} and admissible ordering V≺ :=
{v2 ≺ · · · ≺ vn−1}. We choose the origin O in the exterior of Po but very
close to a facet Fo of Po so that the hyperplanes supporting others facets of
Po do not separate O from Po. Now, identifying R2k+1 to R2k × R, we set
v1 = (0,−1) and vn = (0, 1). Consider the polytope P1 := conv(v1, . . . , vn).
It is clear that

AffAffAff ({v1, . . . , vn}) = AAA2k+2({v1 ≺ · · · ≺ vn}).

Since P1 is simplicial, small perturbations of its vertices keep its combina-
torial type: if w2, . . . , wn−1 are points chosen in general position in small
balls centered at v2, . . . , vn−1, respectively, then

P := conv(v1, w2, w3, . . . , wn−1, vn)

is a cyclic 2k+1-polytope. The reader may check that this process produces
any realizable cyclic polytope of rank 2k, k ≥ 2.
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