DELPECH Nicolas
Diplôme Universitaire de Préparateur Physique
UFR STAPS DIJON

ESSAI D'OPTIMISATION ET D'INDIVIDUALISATION DE CERTAINS EXERCICES DE PLIOMETRIE EN ATHLETISME

Année 2003-2004
Je tiens tout d'abord à remercier les athlètes qui ont participé aux différents tests permettant de constituer ce mémoire. Ils me permettent de progresser à chacune de mes interventions. Je les remercie pour la confiance qu'ils me portent et pour ne jamais douter de mes innovations.

J'espère ne pas avoir abusé de leur coopération et souhaite que les résultats que j'ai pu observer contribueront à les faire progresser, rendez-vous aux compétitions estivales.

Merci aussi à Pascal Lacombe, responsable du pôle France d'athlétisme et à Christian Christophel, responsable de la section musculation et haltérophilie de l'Asptt Strasbourg, de m'avoir guidé dans mon travail pour mener à bien ce travail de recherche.
INTRODUCTION .. 4

-I- LA PLIOMETRIE ... 6
 -A- La pliométrie ; étymologie et définition .. 7
 -B- Pourquoi utiliser la pliométrie? ... 7
 -C- Pourquoi un tel gain de force? ... 7
 • Le réflexe myotatique .. 8
 • L’élasticité musculaire .. 9
 -D- Quelle est l’influence de la pliométrie sur la physiologie du muscle? 9
 -E- Les exercices de pliométrie .. 10
 • Les variantes d’exécution ... 10
 • Les paramètres d’exécution ... 10
 -F- Comment planifier la pliométrie? .. 11

-II- LE CONTEXTE D’ENTRAINEMENT ... 12
 -A- Les caractéristiques physiques des participants 13
 -B- L’entraînement ... 15
 • Les caractéristiques des lieux d’entraînement 15
 • Le planning hebdomadaire .. 15
 • Les cycles “force” et ” technique” .. 16
 • La saison estivale 2004 .. 16

-III- L’INDIVIDUALISATION ET L’OPTIMISATION DE CERTAINS EXERCICES... 18
 -A- Les caractéristiques du matériel utilisé pour les tests 19
 -B- Les exercices de pliométrie ... 19
 • Le saut en contrebas en “pieds” ... 20
 • Le saut en contrebas en “cuisses” .. 21
 • Le banc debout ... 22
 -C- Les paramètres recherchés ... 23
 -D- Les résultats des expériences ... 23
 -E- Les conclusions .. 27

-IV- LES SEANCES EFFECTUEES SUITE AU TRAVAIL PRECEDENT 29
 -A- Une séance de musculation lors d’un cycle de pliométrie 30
 -B- Une séance de bancs .. 31
 -C- Une séance de travail intermittent .. 32
 -D- Une séance de Drop Jump en “squats” .. 33

-V- UN BILAN PLIOMETRIQUE EN COMPLEMENT .. 35
 -A- Les autres tests d’évaluation ... 36
 -B- Les résultats .. 37
 -C- Un bilan individualisé ... 39

CONCLUSION ... 40

BIBLIOGRAPHIE ... 42

ANNEXES .. 43
INTRODUCTION
Entraîneur au pôle espoir de Strasbourg d’athlétisme, j’entraîne une dizaine d’athlètes (garçons et filles confondus) en longueur, triple saut et sprint depuis 5 à 10 ans pour les plus anciens.

Grâce à mon expérience au sein de ce groupe, j’ai pu constater à quel point il était important que chaque athlète ait un plan d’entraînement adapté à ses disciplines, son niveau, ses capacités et ses qualités (énergétiques, d’élasticité, de récupération, morphologiques...).

Des progrès significatifs ont déjà été réalisés lors de la saison hivernale entre autre en individualisant les poids de chacun pour le travail de musculation et en continuant à personnaliser leur vitesse maximale aérobie (VMA) pour le sprint long et le travail intermittent.

Ils ont ainsi battu pratiquement tous leurs records. Certains même ont terminé ½ finalistes dans leurs épreuves et l’un d’entre eux à effectuer un doublé aux championnats de France jeunes en longueur et triple saut.

Suite à l’observation sur le terrain de séances de bondissements avec des bancs ou des plinths (séances de pliométrie moyenne ou lourde), j’ai pu me rendre compte d’un paramètre important pour le travail de chacun. Il y avait un problème avec la hauteur proposé pour les exercices (en l’occurrence un banc).

Une des athlètes en particulier avait eu beaucoup de mal à faire la séance au même rythme et avec la même intensité que les autres. C’est à ce moment que je me suis dit les athlètes ne travaillaient peut-être pas avec la même orientation car les bancs pouvaient être trop hauts ou trop bas pour eux.

C’est pourquoi je me suis posé les questions suivantes : quelle serait la hauteur "idéale" de ces bancs ou de ces plinths pour chaque athlète? Et quelles hauteurs fallait-il choisir pour travailler la vitesse, la force ou les 2 en même temps?

Dans une première partie, je vais définir brièvement ce qu’est la pliométrie et essayer de déterminer son utilité, ses exercices et sa planification.

Ensuite, nous verrons dans quel contexte j’interviens; des caractéristiques des athlètes aux différents paramètres de l’entraînement.

Dans une troisième partie, nous expliquerons les modalités des exercices que l’on tentera d’individualiser (les sauts en contrebas et les "banc debout"). Nous présenterons les paramètres choisis qui permettront d'optimiser la hauteur idéale des bancs ou plinths en fonction des objectifs tels que la vitesse, la force ou un compromis entre les deux.

Puis, nous exposerons différentes séances que le travail précédent aura permis d'individualiser.

Et enfin, nous ferons les différents tests qui permettent d’évaluer la progression de l’élasticité, de la puissance musculaire et de la détente et ainsi rectifier l’orientation des prochains entraînements.
-I- LA PLIOMETRIE
Toutes les données théoriques qui suivent proviennent des cours dispensés par Mr Cometti à l’UFR STAPS de Dijon dans le cadre du stage "pliométrie" du diplôme universitaire de préparateur physique en février 2004.

-A- La pliométrie ; étymologie et définition

Selon Wilt le mot PLIOMETRIE vient du grec "plethyein" qui signifie augmenter et du mot "isométrique" qui signifie de même longueur.

Une action musculaire est dite pliométrique si le muscle passe immédiatement de l’état d'étirement (une phase excentrique) à l’état de contraction (une phase concentrique). C’est ce qu’on appelle le cycle étirement - raccourcissement.

Bosco et Komi en 1980 et Schmidtbleicher en 1984 ont montré qu’un étirement préalable du muscle améliore la force et la vitesse de contraction.

La pliométrie permet au muscle de conserver son fonctionnement naturel comme au cours de l’activité physique et peut-être utilisée toute l’année en raison de la diversité des exercices.

-B- Pourquoi utiliser la pliométrie ?

Zatsiorski en 1966 a montré que la force maximale des cuisses était obtenue par un saut en contrebas en "squat" (Drop jump). Le gain de force que génère ce saut en contrebas est supérieure de 1,5 voire 2 fois à la force maximale isométrique; considérée comme la force maximale et obtenue lors d’une poussée en position squat sur barre fixe (Figure 1 -).

![Figure 1](image1.jpg)

Figure 1 – Différence entre le gain de force que génère le travail musculaire isométrique et le travail musculaire pliométrique

-C- Pourquoi un tel gain de force ?

Bosco, en 1985, a démontré que cette énergie supplémentaire provenait de l'utilisation du "cycle étirement - raccourcissement" en mettant en relation la vitesse de l'articulation du genou avec la force développée sur une plate forme de force suite à des squat jumps et à des drops jumps (Figure 2)
En 1972, Bosco a estimé que ce gain provenait pour les 2/3 du rôle de l’élasticité musculaire et pour 1/3 de l'intervention du réflexe myotatique en analysant le gain d’énergie d’un contremouvement jump comparé à un squat jump.

Le réflexe myotatique

Quand un muscle est étiré trop violemment, il se contracte par réaction de défense pour se protéger : il s'agit du réflexe myotatique.

Schmidtbleicher en 1985 a mis en évidence ce réflexe avec l'expérience de la Figure 3. Il a mis en parallèle les forces maximales développées par une contraction isométrique et par un saut en contrebas.

Les ordonnées représentent la sollicitation musculaire développé et le temps en millisecondes est reporté sur l'axe des abscisses (0 = impact au sol). On constate :

- Un dépassement de la force maximale isométrique,
- une participation du réflexe myotatique (montré par la flèche).
- L’élasticité musculaire

Le schéma de Hill ci-contre met en évidence la composition du muscle (figure 4).

Une partie contractile avec les ponts d’actine-myosine et une partie élastique

Cette seconde partie regroupe une composante en “parallèle” (l’enveloppe musculaire) et une composante en série (élasticité série).

L’élasticité se compose d’une partie passive (dans les tendons) et une partie active (dans le muscle)

Notons que cette élasticité (du système tendon-muscle) est différente selon les muscles sollicités. Pour les quadriceps, c’est l’élasticité du muscle qui est en grande partie responsable tant dit que pour les mollets c’est l’élasticité des tendons.

-D- Quelle est l’influence de la pliométrie sur la physiologie du muscle?

L’entraînement pliométrique provoque une amélioration des facteurs nerveux et élastique de la force musculaire.

L’action pliométrique, pour les facteurs nerveux, agit sur le recrutement de nombreuses fibres motrices et sur la synchronisation de ces fibres motrices et pour les facteurs liés à l’étirement, on travaille sur le réflexe myotatique et l’élasticité.

Les impacts de l’entraînement en pliométrie sont nombreux, ci-dessous une liste non exhaustive :

- Action sur la synchronisation des fibres musculaires entre elles : Contraction des fibres au même moment d’où une force et une efficacité supérieures donc augmentation sensible de la force explosive.
- Action sur les fibres rapides sans quasiment utiliser les fibres lentes car la contraction en pliométrie est très rapide.
- Transmission rapide d’une quantité d’énergie nerveuse plus importante vers les muscles sollicités.
- Action sur le recrutement des unités et des fibres musculaires.
- Transformation de la puissance musculaire en puissance explosive.
- Développement de forces supérieures à la force maximale volontaire.
Les exercices de pliométrie

On distingue plusieurs degrés de difficulté dans l'entraînement pliométrique, du simple bondissement jusqu'au saut en contrebas. Ceci n'étant pas le sujet du mémoire, nous verrons brièvement les différents types de bondissements selon les variantes possibles et les paramètres que l'on peut modifier.

• **Les variantes d'exécution**

Il existe 2 types de sauts ; des bondissements verticaux et horizontaux. On peut aussi faire varier le support des exercices, voici quelques exemples :

- Travail avec cordes à sauter
- Travail avec plots ou haies basses
- Travail avec haies hautes
- Travail avec bancs, plinth bas
- Travail avec élastique
- Travail avec cerceaux, plot et lattes…

On peut aussi dissocier le haut du corps et le bas du corps en mobilisant les bras avec de lattes vers l'avant ou en haut, en tapant dans ces mains en avant et en arrière, avec un médecine-ball… Les bondissements peuvent s'effectuer avec des impulsions différentes et ainsi faire varier les sollicitations :

- Cloche pied droit/gauche
- Pieds joints
- En skipping avant et arrière
- Pieds en fente
- Pieds plus écartés…

• **Les paramètres d'exécution**

Nous pouvons jouer sur 3 types de paramètres :

1. Le premier est de faire varier le mode de déplacement : sur place, petit déplacement, et grand déplacement.
2. Le second est d'exécuter les exercices avec des placements différents : Flexion en pied, Flexion en "squat" (1/2 ou complet) ou flexion "normale".
3. Le dernier paramètre a prendre en compte est le rythme d'exécution : plus orienté en amplitude ou plus en fréquence.

On pourra cataloguer les exercices de pliométrie selon l'intensité des sollicitations :

- Les exercices simples (bondissements plots, lattes, cerceaux…)
- Les exercices à intensité moyenne (haies, bancs, plinth bas…)
- Les exercices intenses (plinth haut…)
- La musculation lourde sous forme pliométrique (avec des temps de ressorts)
F- Comment planifier la pliométrie?

La programmation de la pliométrie peut paraître complexe vu le nombre d'exercices et de variantes. C'est pourquoi je ne rentrerai pas dans le détail et je me limiterai aux 4 catégories désignées dans la partie précédente et en partie à la planification des exercices que l'on va tenter d'individualiser (les exercices à intensité moyenne et les exercices intenses).

La planification retenue se divise en 2 périodes, hivernale et estivale. Chaque période va alterner des cycles de 3 semaines à dominante force et technique avec 2 objectifs selon le schéma suivant :

- Un bloc force avec 2 à 3 cycles de force, c'est la prise de force.
- Un bloc technique avec 2 cycles de technique, c'est la précompétition avec le 1er objectif.
- Un bloc force avec 1 cycle de force nommé, c'est le rappel de force.
- Un bloc technique avec 1 cycle de technique, c'est la période de compétition avec le 2ème objectif.

La pliométrie "légère" peut s'effectuer toute l'année. Ces exercices ne nécessitent pas de temps de récupération particulier.

Les exercices à intensité moyenne sont placés en périodes de prise de force, de compétition et de précompétition. Le temps de récupération de ce type de travail est d'une semaine. Pour un entraînement avec des exercices de cette intensité, il faut entre 48 et 72 heures de récupération avant le prochain entraînement. Il faut au maximum programmer 2 à 3 séances dans une semaine. L'effet d'une séance de ce type est de 3 jours.

L'impact d'un cycle de pliométrie intense est situé 3 semaines après. Le cycle est donc placé 6 semaines avant les 2 objectifs (en période "précompétition" et "rappel de force"). La récupération pour ce type de séance est de 8 à 10 jours. L'effet d'une séance de ce type est de 10 jours.

Pour la musculation lourde avec une exécution dite pliométrique, ces séances sont placées durant les blocs forces ("prise de force" et "rappel de force" en moins grande quantité) en général 9 semaines avant la compétition (voir Figure 14).
-II- Le contexte d'entraînement
-A- Les caractéristiques physiques des participants

Afin de connaître les athlètes qui ont participé aux différentes tests, une fiche individualisée est présentée ci-dessous avec leurs caractéristiques morphologiques (taille et poids), leur âge, leur catégorie, le nombre d'années de pratique et le nombre d'entraînement par semaine.

Sont aussi indiquées la meilleure performance dans leurs disciplines ainsi que leur niveau en musculation. Le ½ squat est un squat avec une flexion des jambes à 90%. L'exercice "mollets" est caractéristique d'une élévation sur pointes des pieds avec la barre sur le dos.

Ces exercices sont exécutés avec des reposes barres mobiles et donc la priorité est à la bonne exécution du geste en toute sécurité, de ce fait les charges maximales sont sûrement sous-évaluées. Ces dernières sont déterminées par la formule de Brazyczki avec des moins de 10 répétitions :
Charge maximale = charge soulevée / (1,0278-(0,0278xNb de répétitions)).

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Age</th>
<th>Performances</th>
<th>Musculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadet 2</td>
<td>17ans -1987</td>
<td>60m 100m 200m</td>
<td>½ Squat Mollets Développé couché</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>801 1274 26*28</td>
<td>125 Kg 145 Kg 36 Kg</td>
</tr>
<tr>
<td>Années de Pratique</td>
<td>Nombre d'entraînements</td>
<td>6 ans 3-4</td>
<td></td>
</tr>
<tr>
<td>Madeleine A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie</td>
<td>Age</td>
<td>Performances</td>
<td>Musculation</td>
</tr>
<tr>
<td>Junior 1</td>
<td>18ans -1986</td>
<td>Longueur 320mH 200m</td>
<td>½ Squat Mollets Développé couché</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>5m47 51"10</td>
<td>107 Kg - Kg 30 Kg</td>
</tr>
<tr>
<td>Années de Pratique</td>
<td>Nombre d'entraînements</td>
<td>10 ans 3</td>
<td></td>
</tr>
<tr>
<td>Madeleine A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie</td>
<td>Age</td>
<td>Performances</td>
<td>Musculation</td>
</tr>
<tr>
<td>Espoir 2</td>
<td>21ans -1983</td>
<td>Longueur 100mH 400mH</td>
<td>½ Squat Mollets Développé couché</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>5m67 1599 6840</td>
<td>108 Kg - Kg 42 Kg</td>
</tr>
<tr>
<td>Années de Pratique</td>
<td>Nombre d'entraînements</td>
<td>7 ans 3-4</td>
<td></td>
</tr>
<tr>
<td>Marion A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie</td>
<td>Age</td>
<td>Performances</td>
<td>Musculation</td>
</tr>
<tr>
<td>Junior 1</td>
<td>18ans -1986</td>
<td>320mH</td>
<td>½ Squat Mollets Développé couché</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>52*40</td>
<td>105 Kg 200 Kg Kg</td>
</tr>
<tr>
<td>Années de Pratique</td>
<td>Nombre d'entraînements</td>
<td>6 ans 3-4</td>
<td></td>
</tr>
</tbody>
</table>

Essai d'individualisation et d'optimisation de certains exercices de pliométrie en athlétisme - Nicolas DELPECH
LES ATHLETES MASCULINS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Age</th>
<th>Performances</th>
<th>Musculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadet 2</td>
<td>17ans -1987</td>
<td>Longueur</td>
<td>Triple saut</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>7m04</td>
<td>14m77</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>69 Kg</td>
<td>190 cm</td>
</tr>
<tr>
<td>Années de</td>
<td>Pratique</td>
<td>Nombre</td>
<td>d'entraînements</td>
</tr>
<tr>
<td>11 ans</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie</td>
<td>Age</td>
<td>Performances</td>
<td>Musculation</td>
</tr>
<tr>
<td>Junior 1</td>
<td>18ans -1986</td>
<td>60m</td>
<td>100m</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>70 Kg</td>
<td>174 cm</td>
</tr>
<tr>
<td>Années de</td>
<td>Pratique</td>
<td>Nombre</td>
<td>d'entraînements</td>
</tr>
<tr>
<td>11 ans</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie</td>
<td>Age</td>
<td>Performances</td>
<td>Musculation</td>
</tr>
<tr>
<td>Espoir 2</td>
<td>21ans -1983</td>
<td>Longueur</td>
<td>100mH</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>70 Kg</td>
<td>175 cm</td>
</tr>
<tr>
<td>Années de</td>
<td>Pratique</td>
<td>Nombre</td>
<td>d'entraînements</td>
</tr>
<tr>
<td>4 ans</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie</td>
<td>Age</td>
<td>Performances</td>
<td>Musculation</td>
</tr>
<tr>
<td>Junior</td>
<td>18ans -1986</td>
<td>400m (salle)</td>
<td>12m78</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>69 Kg</td>
<td>190 cm</td>
</tr>
<tr>
<td>Années de</td>
<td>Pratique</td>
<td>Nombre</td>
<td>d'entraînements</td>
</tr>
<tr>
<td>6 mois</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie</td>
<td>Age</td>
<td>Performances</td>
<td>Musculation</td>
</tr>
<tr>
<td>Junior</td>
<td>18ans -1986</td>
<td>Longueur</td>
<td>12m38</td>
</tr>
<tr>
<td>Poids</td>
<td>Taille</td>
<td>68 kg</td>
<td>181 kg</td>
</tr>
<tr>
<td>Années de</td>
<td>Pratique</td>
<td>Nombre</td>
<td>d'entraînements</td>
</tr>
<tr>
<td>6 ans</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Le groupe est coupé en 2. Selon l'investissement de chacun, nous avons décidé en début d'année de l'appartenance à l'un des 2 groupes.

Le premier groupe travaille avec des charges lourdes; ce sont les personnes qui viennent régulièrement à l'entraînement et qui ont déjà un vécu de musculation (bonne exécution des exercices). Il s'agit de Benjamin, Nicolas B, Ariane, Manu et Adrien.

En général, Les exercices sont les squats, les développés couchés, les arrachés et le travail en triceps. A ceux-ci s'ajoutent le travail de gainage, abdominaux, lombaires, et le travail de pliométrie légère effectués toute l'année. L’alternance des régimes de contraction (concentrique, isométrique etc.) est indiquée à la page 16 avec le Tableau 2 sur la saison estivale 2004.

L’autre groupe représente le reste des athlètes qui a une dominante plus en renforcement musculaire et en préparation physique (générale, orientée et spécifique). Ce type de séance de "physique" est organisée sous forme d'ateliers en circuit avec des dominantes "volume" ou "intensité" suivant selon l'année.

-B- L'entraînement

Les caractéristiques des lieux d'entraînement

Les entraînements ont lieu soit au creps de Strasbourg, soit au stade d'athlétisme de Strasbourg Hautepierre. Ci-dessous les caractéristiques de ces différents sites :

CREPS de Strasbourg
Gymnase d'athlétisme avec piste en tartan et ligne droite de 60m.
Sautoirs : Perche. Longueur/Triple saut. Hauteur
Musculation : Plusieurs barres de 15 à 20 KG et 160Kg de poids + 2 reposes barres.

STADE de Strasbourg Hautepierre
Stade d'athlétisme de 400m "officiel".
Musculation : 2 Barres de 9Kg et 100Kg de poids + un repose barre.

Le planning hebdomadaire

Il y a 4 jours d'entraînement répartis dans la semaine en fonction des horaires des athlètes étudiants, salariés et lycéens.

Mardi : 18h30-20h00 au CREPS
Mercredi : 18h00-20h00 au Stade
Vendredi : 18h00-20h00 au CREPS
Dimanche : 10h00-13h00 au CREPS puis Stade en saison estivale
• Les cycles "force" et "technique"

Les cycles représentent un enchaînement de 3 semaines. Nous partons à 100% du volume de travail puis 80% et enfin 30%. Voici 2 exemples de cycles l'un avec une orientation force et l'autre avec une orientation technique (Tableau 1).

<table>
<thead>
<tr>
<th>CYCLE orienté FORCE</th>
<th>Semaine</th>
<th>Volume</th>
<th>Mardi</th>
<th>Mercredi</th>
<th>Vendredi</th>
<th>Dimanche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>100%</td>
<td>Force maximale x5</td>
<td>Technique course</td>
<td>Force spécifique x5</td>
<td>Force maximale x5 Travail Intermittent (3x7'/8')</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>80%</td>
<td>Force spécifique x4</td>
<td>Technique course</td>
<td>Force spécifique x4</td>
<td>Force maximale x4 Travail Intermittent (3x7'/8')</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>30%</td>
<td>Technique</td>
<td>Technique course</td>
<td>Vitesse</td>
<td>Technique ou/et Vitesse Travail Intermittent (3x7'/8') Sophrologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYCLE orienté TECHNIQUE</th>
<th>Semaine</th>
<th>Volume</th>
<th>Mardi</th>
<th>Mercredi</th>
<th>Vendredi</th>
<th>Dimanche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>100%</td>
<td>Force maximale x5</td>
<td>Technique course</td>
<td>Force spécifique x5</td>
<td>Technique Vitesse Sophrologie</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>80%</td>
<td>Force maximale x4</td>
<td>Technique course</td>
<td>Technique</td>
<td>Technique Travail Intermittent (3x7'/8') Sophrologie</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>30%</td>
<td>Technique</td>
<td>Force spécifique x3</td>
<td>Technique course</td>
<td>Technique Vitesse</td>
</tr>
</tbody>
</table>

Tableau 1 - Un exemple de cycle force et de cycle technique

• La saison estivale 2004

La planification des entraînements ci-dessous représente la saison estivale pour l'année 2003-2004. C'est la seconde période étant donné que l'athlétisme est un sport à double périodisation. La période 1 (hivernale) s'est terminée au mois de février avec les championnats de France pour la plupart des athlètes.

En athlétisme, la qualification aux championnats de France se fait sur minima : les minima A qui, effectués dans une compétition, permettent la qualification automatique, les minima D et E sont à réaliser le jour des régionaux ou des interrégionaux, les performances de niveau "D" sont directes pour les France et les "E" permettent d'être sur la liste d'attente.

L'objectif de cette saison est de faire les minima D aux régionaux mais surtout aux interrégions pour aller aux "France". La seule exception est celle de Benjamin C. qui fait régulièrement les minima A (Double champion de France 2004 en salle.
longueur – Triple saut) et dont l'objectif est le titre. Page suivante, le découpage de la période estivale 2004 (Tableau 2).

SAISON ESTIVALE 2004 – Période 2

<table>
<thead>
<tr>
<th>CYCLE</th>
<th>CYCLE 1</th>
<th>CYCLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semaine</td>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>Période</td>
<td>01/03-07/03</td>
<td>08/03-14/03</td>
</tr>
<tr>
<td>Dominante</td>
<td>FORCE</td>
<td>FORCE</td>
</tr>
<tr>
<td>Musculation</td>
<td>PPG</td>
<td>PPG</td>
</tr>
<tr>
<td>Dominante</td>
<td>FORCE</td>
<td>FORCE</td>
</tr>
<tr>
<td>Musculation</td>
<td>BULGARE dans la série</td>
<td>ISOMETRIE</td>
</tr>
<tr>
<td>Dominante</td>
<td>FORCE</td>
<td>FORCE</td>
</tr>
<tr>
<td>Musculation</td>
<td>BULGARE dans la série</td>
<td>ISOMETRIE</td>
</tr>
<tr>
<td>Dominante</td>
<td>FORCE</td>
<td>BULGARE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAISON ESTIVALE 2004 – Période 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saut-Haies sans Muscu</td>
</tr>
<tr>
<td>Saut-Haies avec Muscu</td>
</tr>
<tr>
<td>Sprint</td>
</tr>
<tr>
<td>Ben</td>
</tr>
<tr>
<td>Compets</td>
</tr>
</tbody>
</table>

Tableau 2 – Les cycles de la saison estivale 2004

Essai d'individualisation et d'optimisation de certains exercices de pliométrie en athlétisme - Nicolas DELPECH
-III- L'INDIVIDUALISATION et L'OPTIMISATION DE CERTAINS EXERCICES
-A- Les caractéristiques du matériel utilisé pour les tests

Nous avons utilisé un tapis de type Bosco de la marque GLOBUS. Son nom est l'ergotester.

Composé d'un boîtier (Figure 5) et d'un tapis de saut, le tapis est constitué de capteurs liés à un chronomètre du boîtier.

Il permet d'effectuer différents tests de détente (saut unique ou multisauts) en donnant des indications telles que la hauteur du rebond (suite au calcul du temps de suspension), les temps d'impulsions, des moyennes...

Tous les tests ont été effectués dans la halle du Creps de Strasbourg ou dans une salle de musculation avec un revêtement en tartan.

Des plinths avec un revêtement en tartan (pour toutes les hauteurs), et des bancs en bois (pour la hauteur 45 cm) ont été utilisés pour faire varier les hauteurs.

-B- Les exercices de pliométrie

Nous allons tenter d'individualiser 3 exercices de pliométrie. Ces exercices ont été choisis car nous les utilisons régulièrement dans l'entraînement.

Le premier est le saut en contrebas en "pieds" : un saut est effectué à partir d'un plinth avec une réception en jambes tendues avec un rebond le plus haut possible. Il les mollets. Le Tableau 3 de la page 20 indique tous les paramètres pour ce saut.

Le second est un des exercices type de la pliométrie : le saut en contrebas en cuisse ou en "squat". Il consiste à effectuer un saut au départ d'un plinth et de rebondir le plus haut possible. Les modalités de ce saut sont regroupées sur le Tableau 4 de la page 16.

Le troisième test rassemble les exercices "banc debout". Ce sont des bondissements avec une impulsion sur le banc (Voir le Tableau 5 p22).

Il a été demandé aux athlètes de privilégier la hauteur du rebond tout en exécutant les exercices avec une grande vitesse d'impulsion afin d'évaluer aux mieux la puissance des cuisses ou des mollets. Ce rebond se fait avec une dominante verticale.

Les "drops jumps" ont été effectués durant les vacances de Février 2004 en fin de saison hivernale. Les "bancs debout" ont eu lieu durant les vacances de
Pâques après un gros bloc "force" (concentrique et isométrique) et pendant un cycle "technique" en pliométrie. Ceci afin d'éviter une "surcharge" de tests.

- **Le saut en contrebas en "pieds"**

<table>
<thead>
<tr>
<th>Objectifs</th>
<th>Evaluer la force et la force réactive des mollets (extenseurs des pieds). Détermination de la capacité à utiliser l’effet pliométrique.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalités d’exécution</td>
<td>Départ debout sur le plinth (on s’aide de ses bras) avec un pied dans le vide (voir photo). Dos droit. On “chute” pieds joints avec réception jambes tendues. Les pieds sont en position "armée" (pieds en flexion). Executer un rebond le plus haut possible tout en étant rapide à l’impulsion (2 à 3 essais) après un contact uniquement de la plante des pieds. Se réceptionner avec jambes tendues suivie de rebonds pour éviter un trop dur contact avec le sol.</td>
</tr>
<tr>
<td>Modalités de validité</td>
<td>Ne pas sauter au départ du plinth cela fausserait la hauteur réelle, Il faut bien se laisser tomber (voir le départ sur l’image). Ne pas plier les jambes lors du rebond sinon il y aura une intervention des muscles de la cuisse. Le contact avec le sol doit uniquement s’effectuer sur la plante des pieds. Ne pas plier les jambes en réception car sinon il y a une augmentation du temps de suspension et donc un résultat faussé. La validité des sauts est effectué par 2 athlètes et si un doute subsiste on fait appel au logiciel Dart Trainer qui couplé à un caméscope numérique et à un ordinateur permet en temps réel de vérifier les différents paramètres précédents.</td>
</tr>
<tr>
<td>Paramètres mesurés</td>
<td>Hauteur du rebond (en m). Temps de réaction (en sec) = temps de contact entre la réception de la chute et de l’impulsion du rebond.</td>
</tr>
<tr>
<td>Détermination de coefficients</td>
<td>Coefficient de restitution = Rapport entre la hauteur de chute et la hauteur de rebond. Plus le coefficient est élevé et plus la restitution est importante. Il caractérise la force des pieds. Il témoigne de la capacité de l’athlète à utiliser l’effet pliométrique. Coefficient de réactivité = Rapport entre la hauteur de chute et la durée d’impulsion. Plus le coefficient est élevé et plus il caractérise la vitesse de réaction des pieds. Il traduit la capacité de l’athlète à produire une impulsion élevée dans le temps le plus bref.</td>
</tr>
</tbody>
</table>

Tableau 3 - Modalités d’un saut en contrebas en “pieds”
• **Le saut en contrebas en "cuisse"**

DROP JUMP ou SAUT EN CONTREBAS en "SQUATS"

<table>
<thead>
<tr>
<th>Objectifs</th>
<th>Evaluer la force et la force réactive des cuisses (des extenseurs des jambes). Détermination de la capacité à utiliser l'effet pliométrique.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalités d'exécution</td>
<td>Départ debout sur le plinth (on s'aide de ses bras) On "chute" pieds joints avec réception position ½ squat : angle droit jambes (triceps sural) / cuisses (ischios-jambiers) Dos droit Effectuer un rebond le plus haut possible tout en étant rapide à l'impulsion (2 à 3 essais) après un contact du talon au sol Se réceptionner avec jambes tendues suivie de rebonds pour éviter un trop dur contact avec le sol</td>
</tr>
<tr>
<td>Modalités de validité</td>
<td>Ne pas sauter au départ du plinth Ne pas plier trop les jambes pour le rebond ou inversement et bien effectuer un ½ squat (Validation par la vidéo) Ne pas plier les jambes en réception car sinon il y une augmentation du temps de suspension et donc un résultat faussé La validité des sauts est effectué par 2 athlètes et si un doute subsiste on fait appel au logiciel Dart Trainer qui, couplé à un camescope numérique et à un ordinateur, permet en temps réel de vérifier les différents paramètres précédents</td>
</tr>
<tr>
<td>Paramètres mesurés</td>
<td>Hauteur du rebond (en m) Temps de réaction (en sec) = temps de contact entre la réception de la chute et de l'impulsion du rebound</td>
</tr>
<tr>
<td>Détermination de coefficients</td>
<td>Coefficient de restitution = Rapport entre la hauteur de chute et la hauteur de rebond. Plus le coefficient est élevé et plus la restitution est importante. Il caractérise la force des cuisses. Il témoigne de la capacité de l'athlète à utiliser l'effet pliométrique. Coefficient de réactivité = Rapport entre la hauteur de chute et la durée d'impulsion. Plus le coefficient est élevé et plus il caractérise la vitesse de réaction des cuisses. Il traduit la capacité de l'athlète à produire une impulsion élevée dans le temps le plus bref.</td>
</tr>
</tbody>
</table>

Tableau 4 - Modalités du saut en contrebas en "cuisse"
Le banc debout

Evalue la poussée complète des muscles de la cuisse et des mollets avec un travail de coordination des bras (simultané) suite à une flexion/extension rapide de la cuisse sur le banc.
Déterminer la hauteur idéale du banc avec la meilleure jambe (en prenant le même pied que le pied d’impulsion lors des sauts).

Départ 1 pied en position verticale sur le banc (pose du pied à plat) et 1 pied à terre, jambe tendue, en dehors du tapis.
Effectuer un bond le plus haut possible et légèrement vers l’avant avec une poussée complète de la jambe pliée.
Reception dans la position de départ avec un appui sur le tapis de la jambe tendue et une autre sur le banc avec le pied à plat.
Effectuer un autre bond le plus haut possible tout en étant rapide à l’impulsion.

Réception avec jambes tendues suivie de rebonds pour éviter un trop dur contact avec le sol sur le tapis de Bosco.

Effectuer un réel 1er saut pour être dans les mêmes conditions qu’une séance de banc où on enchaîne plusieurs "bancs debout".
Ne pas effectuer de mouvement de flexion de la jambe tendue avant l’impulsion.
Ne pas plier les jambes lors du rebond.
Ne pas plier les jambes en réception car sinon il y une augmentation du temps de suspension et donc un résultat faussé.

La validité des sauts est effectuée par 2 athlètes et si un doute subsiste on fait appel au logiciel Dart Trainer qui couplé à un caméscope numérique et à un ordinateur permet en temps réel de vérifier les différents paramètres précédents.

La hauteur du rebond (en m) est un paramètre mesuré qui permet de suivre l’augmentation ou la diminution de la performance de l’athlète.

Le temps de réaction (en sec) est le temps de contact entre la réception de la chute et de l’impulsion du rebond.

Le coefficient de réactivité est un des paramètres déterminés.

Le tableau 5 ci-dessous présente les modalités d’exécution du banc debout.

<table>
<thead>
<tr>
<th>Objectifs</th>
<th>Modalités d’exécution</th>
<th>Modalités de validité</th>
<th>Paramètres mesurés</th>
<th>Détermination de coefficients</th>
<th>Analyse de l’exercice pour aller plus loin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluer la poussée complète des muscles de la cuisse et des mollets avec un travail de coordination des bras (simultané) suite à une flexion/extension rapide de la cuisse sur le banc.</td>
<td>Départ 1 pied en position verticale sur le banc (pose du pied à plat) et 1 pied à terre, jambe tendue, en dehors du tapis.</td>
<td>Effectuer un bond le plus haut possible et légèrement vers l’avant avec une poussée complète de la jambe pliée.</td>
<td>Hauteur du rebond (en m)</td>
<td>Coefficient de réactivité = Rapport entre la hauteur de chute et la durée d’impulsion. Plus le coefficient est élevé et plus il caractérise la vitesse de réaction des extenseurs des membres inférieurs. Il traduit la capacité de l’athlète à produire une impulsion élevée dans le temps le plus bref.</td>
<td>Le second problème est l’action de la jambe tendue qui a tout de même une légère action pliométrique entre la réception et l’impulsion car cette jambe se plie automatiquement.</td>
</tr>
<tr>
<td>Déterminer la hauteur idéale du banc avec la meilleure jambe (en prenant le même pied que le pied d’impulsion lors des sauts).</td>
<td>Effectuer un bond le plus haut possible et légèrement vers l’avant avec une poussée complète de la jambe pliée.</td>
<td>Reception dans la position de départ avec un appui sur le tapis de la jambe tendue et une autre sur le banc avec le pied à plat.</td>
<td>Temps de réaction (en sec) = temps de contact entre la réception de la chute et de l’impulsion du rebond.</td>
<td>Analyse de l’exercice pour aller plus loin</td>
<td>La réception de la jambe pliée sur le banc est-elle plus efficace pied à plat ou sur la plante de pieds sous le bassin?</td>
</tr>
</tbody>
</table>

Tableau 5 - Modalités du banc debout

Le "banc debout" est un exercice très technique par rapport aux drops jumps et autres tests, de ce fait son exécution et sa validité sont complexes. Nous n’avons
pas voulu transformer leur technique de bondissements mais tenter d'individualiser la hauteur avec seulement quelques points d'exécution et de validité.
-C- Les paramètres recherchés

Le tableau ci-dessous (Tableau 6) indique les différents paramètres que l'on va rechercher suite aux résultats des 3 tests précédents.

Un nom a été donné pour chaque paramètre afin de pouvoir s'y référer plus facilement dans les analyses et dans l'utilisation de ces exercices.

<table>
<thead>
<tr>
<th>Type de sauts</th>
<th>Nom</th>
<th>Ce que je recherche</th>
<th>Où trouver l'information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauts contrebas "en pieds"</td>
<td>"Banc à banc"</td>
<td>La hauteur idéale pour travail de banc à banc en pieds</td>
<td>Coefficient de restitution égal à 1</td>
</tr>
<tr>
<td></td>
<td>"Force"</td>
<td>La hauteur idéale qui sollicite le plus de puissance possible</td>
<td>Hauteur de rebond la plus grande</td>
</tr>
<tr>
<td></td>
<td>"Vitesse"</td>
<td>La hauteur qui permet une exécution la plus rapide</td>
<td>Temps d'impulsion le plus bref</td>
</tr>
<tr>
<td></td>
<td>"Force vitesse"</td>
<td>La hauteur idéale qui sollicite le meilleur rapport hauteur de rebond/temps d'impulsion</td>
<td>Coefficient de réactivité le plus grand</td>
</tr>
<tr>
<td>Sauts contrebas "en squat"</td>
<td>"Force"</td>
<td>La hauteur idéale qui sollicite le plus de puissance possible</td>
<td>Hauteur de rebond la plus grande</td>
</tr>
<tr>
<td></td>
<td>"Vitesse"</td>
<td>La hauteur idéale qui permet une exécution la plus rapide</td>
<td>Temps d'impulsion le plus faible</td>
</tr>
<tr>
<td></td>
<td>"Force vitesse"</td>
<td>La hauteur idéale qui sollicite le meilleur rapport hauteur de rebond/temps d'impulsion</td>
<td>Coefficient de réactivité le plus grand</td>
</tr>
<tr>
<td>Banc debout</td>
<td>"Force"</td>
<td>La hauteur idéale qui sollicite le plus de puissance possible</td>
<td>Hauteur de rebond la plus grande</td>
</tr>
<tr>
<td></td>
<td>"Force vitesse"</td>
<td>La hauteur idéale qui sollicite le meilleur rapport hauteur de rebond/temps d'impulsion</td>
<td>Coefficient de réactivité le plus grand</td>
</tr>
</tbody>
</table>

Tableau 6 - Détermination des paramètres recherchés pour les différents exercices de pliométrie

-D- Les résultats des expériences

Les résultats des tests suivent sous forme graphique mais en annexe, vous pourrez trouver les résultats bruts des expériences (p 43 à p 45).

La 1ère expérience réalisée est le drop jump en "pied". Nous avons sur la page suivante (Figure 6) les résultats des coefficients de restitution par rapport aux différentes hauteurs de chute.

Un coefficient égal à 1 permet de déterminer la hauteur pour un bondissement de type plinth-sol-plinth.

Les pointillés verticaux indiquent ces hauteurs pour chacun à savoir :
Ariane = 23 cm - Gwendoline = 23 cm - Madeleine = 33 cm - Benjamin = 42 cm
Nicolas = 23 cm - Adrien = 42 cm - Emmanuel = 23 cm - Guillaume = 33 cm
Ci-dessous (Figure 7) nous avons la hauteur de rebond en fonction des hauteurs de chute. La plus grande hauteur caractérise le meilleur drop jump en "pied" et le paramètre "force".

Au vu des résultats, nous aurions pu encore tester au moins 1 hauteur supplémentaire de 60 cm. Tous les athlètes ont un meilleur rebond pour la hauteur 50 cm sauf Emmanuel et Guillaume avec 42 cm et Gwendoline avec 23 cm.

Le coefficient de réactivité (Figure 8) représentait un compromis entre la hauteur de rebond et le temps d'impulsion. La hauteur de ce saut en contrebas type "force-vitesse" est de 50 cm pour Benjamin, Adrien, Ariane et Madeleine, 42 cm pour Nicolas, Emmanuel et Guillaume, enfin 33 cm pour Gwendoline.
Les courbes pour les différents temps d'impulsion ne sont pas présentées car les meilleurs temps ont tous été réalisés avec le plinthe le plus bas à savoir 13 cm sauf pour Adrien B. pour qui la hauteur serait de 33 cm.

La seconde expérience est le drop jump en "squats". Le 1er paramètre ("force") est la hauteur de rebond qui représente le Best Drop Jump (BDJ).
Les hauteur maximale pour les filles s’est arrêtée à 70 cm car elles n’étaient pas prêtes à tenter les autres hauteurs (Figure 9).

Les coefficients de réactivité rendent compte d'un compromis entre la force et la vitesse (Figure 10). La hauteur idéale correspond au coefficient le plus élevé dont voici les résultats pour chacun : Ariane . Gwendoline . Nicolas 45 cm - Madeleine 50 cm - Adrien . Benjamin . Guillaume 70 cm - Emmanuel 1m16 (ce qui est très impressionnant surtout que le coefficient en fonction des hauteurs n’a pratiquement pas changé).

La durée d’impulsion (Figure 11) permet de trouver la hauteur pour laquelle le travail de drop jump en cuisse s’effectue avec une dominante "vitesse". Nous avons donc un plinthe de 45 cm pour Gwendoline, Nicolas, Benjamin et Emmanuel, un autre de 50 cm pour Madeleine et enfin un de 70 cm pour Adrien, Guillaume et Ariane.
Et pour finir, nous avons ci-dessous les résultats de l'exercice "banc debout". Comme nous l'avons signalé plus haut, cet exercice était le plus complexe dans sa réalisation, les résultats sont tout autant difficiles à analyser.

Le plus gros problème réside dans les hauteurs de rebond. En effet, je m'attendais à une chute de cette donnée au fur et à mesure de l'augmentation de la hauteur du banc mais ce n'a pas été le cas. En regardant de plus près dans la réalisation, il s'avère qu'à partir d'une certaine hauteur ce n'est plus un bondissement mais plutôt une prise d'appui sur le plinth malgré une durée d'impulsion semblable d'un plinth à l'autre.

Pour déterminer la hauteur idéale pour le travail à dominante "force", je n'ai donc pas pris en compte les hauteurs pour lesquelles il y a une augmentation trop importante de la hauteur du rebond (Figure 12). Voici pour chacun la hauteur de plinth : 38 cm pour Guillaume, 45 cm pour Nicolas, Emmanuel, Ariane, Gwendoline et Marion et enfin 52 cm pour Benjamin et Xavier.

En ce qui concerne le coefficient de réactivité, il aurait été intéressant de pouvoir mesurer la durée d'impulsion de la jambe qui est sur le banc et donc celle qui est la plus sollicitée pour ce travail pliométrique. Comme précédemment, j'ai retiré les hauteurs non "utilisables".

Nous pouvons donc déterminer les hauteurs suivantes pour un travail de "force-vitesse" (Figure 13) : 38 cm pour Guillaume, Nicolas B., Nicolas W., 45 cm pour Benjamin, Emmanuel, Ariane, Gwendoline, Xavier et Marion.
Les conclusions

La partie précédente a permis de déterminer des hauteurs de chute ou de banc personnalisées pour chacun.

Les "drop jump" ont permis d’établir une individualisation assez poussée suivant des objectifs précis et suivant la période de travail. Ce travail ne peut se faire qu'avec des conditions matérielles importantes ; il faut un certain nombre de plinths de hauteurs différentes pour "appliquer" les résultats.

Le travail du banc debout est difficile à exploiter, c'est un exercice complexe voir trop complexe pour permettre une exploitation des résultats et donc pour permettre une évaluation.

Le tableau de la page suivante (Tableau 7 de la page 28) résume toutes les hauteurs pour chaque athlète et pour chaque objectif que l'on a déterminé précédemment.
<table>
<thead>
<tr>
<th></th>
<th>Sauts contrebas "en pieds"</th>
<th>Sauts contrebas "en squat"</th>
<th>Banc debout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Banc à banc"</td>
<td>"Force"</td>
<td>"vitesse"</td>
</tr>
<tr>
<td>Benjamin C.</td>
<td>33 cm</td>
<td>50 cm</td>
<td>13 cm</td>
</tr>
<tr>
<td>Nicolas B.</td>
<td>23 cm</td>
<td>42 cm</td>
<td>13 cm</td>
</tr>
<tr>
<td>Adrien B.</td>
<td>42 cm</td>
<td>50 cm</td>
<td>33 cm</td>
</tr>
<tr>
<td>Emmanuel N.</td>
<td>13 cm</td>
<td>42 cm</td>
<td>13 cm</td>
</tr>
<tr>
<td>Guillaume B.</td>
<td>33 cm</td>
<td>50 cm</td>
<td>13 cm</td>
</tr>
<tr>
<td>Xavier P.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicolas W.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ariane A.</td>
<td>23 cm</td>
<td>50 cm</td>
<td>13 cm</td>
</tr>
<tr>
<td>Gwendoline P.</td>
<td>23 cm</td>
<td>23 cm</td>
<td>13 cm</td>
</tr>
<tr>
<td>Madeleine A.</td>
<td>23 cm</td>
<td>50 cm</td>
<td>13 ou 42 cm</td>
</tr>
</tbody>
</table>

Tableau 7 - Bilan de l'individualisation des exercices de pliométrie
-IV- LES SEANCES EFFECTUEES SUITE AU TRAVAIL PRECEDENT
Dans cette partie, je vous présenterai différentes séances qui ont pu être optimisées par le travail d'individualisation précédent, à savoir une hauteur adaptée pour chaque athlète suivant un objectif défini.

-A- Une séance de musculation lors d'un cycle de pliométrie

La Figure 14 représente les 2 séances de musculation durant un cycle technique à dominante pliométrique. Le volume de travail (considéré comme le 100% de ce cycle) correspond à la première semaine du cycle.

On y décrit une séance avec un travail de la force maximale et une autre avec un travail de la force spécifique. La récupération entre les séries est de l'ordre de 5 à 7 minutes.

<table>
<thead>
<tr>
<th>Musculation Cycle 3 - SAISON ESTIVALE - PLIOMETRIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Max Cuisse x4</td>
</tr>
<tr>
<td>1/2 Squat</td>
</tr>
<tr>
<td>2 temps de ressort</td>
</tr>
<tr>
<td>6x 1/2 Squats à 100% du squat complet avec 2 temps de ressort + 8 Haies PJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Force Max Bras x4</th>
<th>Force spécifique Bras x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Développé couché</td>
<td>Enchainement Développé couché + Pompes sautées + Développé couché + Pull Over</td>
</tr>
<tr>
<td>6x à 60% avec 2 temps de ressort + 6 pompes sautées</td>
<td>3 plio à 70-80% x3 3 plio à 70-80% 6x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Force Max Mollet x3</th>
<th>Force spécifique Mollet x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travail Triceps</td>
<td>Enchainement Travail Triceps + Plots Pieds Joints + Sauts plinths en mollets + Skipping</td>
</tr>
<tr>
<td>6x à 80% avec 2 temps de ressort + 6 plots PJ</td>
<td>4 plio à 70-80% x8 x6 (hauteur individualisée - moins de 60cm) x12</td>
</tr>
</tbody>
</table>

Figure 14 – Musculation en force maximale et force spécifique lors d’un cycle technique à dominante pliométrique

Il n’y a pas de temps de récupération lors des enchaînements. Les "sauts en plinths hauts" pour le travail des cuisses correspondent à un saut plinth-sol-plinth. Les hauteurs correspondent à la hauteur "force vitesse" des tests en drops jumps en "squat" (voir le Tableau 7 p28).

Les "sauts plinths" sont des bondissements de type banc-plinth-banc. La hauteur est individualisée suivant les tests Drops Jumps en "pieds" avec le "banc à banc" (voir le Tableau 7 p28).
SEANCE DE BANCS

<table>
<thead>
<tr>
<th>Exercices</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXO -1-</td>
<td>Travail de musculation + Equilibre</td>
</tr>
<tr>
<td>EXO -2-</td>
<td>Travail de musculation, Equilibre, Coordination</td>
</tr>
<tr>
<td>EXO -3-</td>
<td>Travail de réaction du pied (hauteur avec indice de réactivité le plus grand dans les tests de drop jumps en pied)</td>
</tr>
<tr>
<td>EXO -4-</td>
<td>Travail de pliométrie</td>
</tr>
<tr>
<td>EXO -5-</td>
<td>Travail de pliométrie</td>
</tr>
<tr>
<td>EXO -6-</td>
<td>Travail de pliométrie</td>
</tr>
<tr>
<td>EXO -7-</td>
<td>Travail de pliométrie</td>
</tr>
<tr>
<td>EXO -8-</td>
<td>Travail de la vitesse d’impulsion</td>
</tr>
<tr>
<td>EXO -9-</td>
<td>Travail de la vitesse d’impulsion</td>
</tr>
<tr>
<td>EXO -10-</td>
<td>Poussée complète</td>
</tr>
<tr>
<td>EXO -11-</td>
<td>Travail de souplesse de cheville, Equilibre, Coordination - Poussée complète</td>
</tr>
<tr>
<td>EXO -12-</td>
<td>Travail du rythme d’impulsion</td>
</tr>
<tr>
<td>EXO -13-</td>
<td>Travail d’équilibre et nerveux</td>
</tr>
<tr>
<td>EXO -14-</td>
<td>Travail d’équilibre et nerveux</td>
</tr>
<tr>
<td>EXO -15-</td>
<td>Travail de rythme entre bancs ou haies</td>
</tr>
<tr>
<td>EXO -16-</td>
<td>Travail de rythme entre bancs ou haies</td>
</tr>
<tr>
<td>EXO -17-</td>
<td>Travail de rythme entre bancs ou haies</td>
</tr>
</tbody>
</table>

![Diagramme de bancs](image)

Figure 15 - Séance type de bancs
-C- Une séance de travail intermittent

Le travail intermittent permet de maintenir un haut niveau de qualité dans les efforts tout en maintenant une fréquence cardiaque élevée. C'est un exercice qui alterne des temps de travail et de repos.

Le **travail de bondissements** regroupe tous les bondissements verticaux et horizontaux avec ou sans charge. On y trouve aussi les différents exercices de pliométrie que l'on a individualisés dans la partie précédente avec une hauteur qui correspond à une hauteur "force-vitesse". Le temps de travail pour ce type de travail est de 10 secondes avec 20 secondes de récupération.

Le **sprint** est un effort à vitesse maximale pendant 5 secondes. Il nécessite une récupération de 25 secondes.

Le **travail de VMA** est un effort à 100% de la vitesse maximale aérobie. Cette distance (70m à 82m) est bien sûr individualisée suite à un test VMA (45"/15", Luc Léger etc.). La durée de l'effort est de 15 secondes avec autant de récupération.

Pour résumer, le tableau ci-dessous regroupe les différents paramètres :

<table>
<thead>
<tr>
<th></th>
<th>Temps de travail</th>
<th>Temps de récupération</th>
<th>Intensité</th>
<th>Type de récupération</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les bondissements</td>
<td>10 sec</td>
<td>20 sec</td>
<td></td>
<td>Passive ou active</td>
</tr>
<tr>
<td>Les sprints</td>
<td>5 sec</td>
<td>25 sec</td>
<td>100% Intensité max</td>
<td>Passive</td>
</tr>
<tr>
<td>La VMA</td>
<td>15 sec</td>
<td>15 sec</td>
<td>100% VMA</td>
<td>Active</td>
</tr>
</tbody>
</table>

Tableau 8 - Paramètres pour le travail intermittent

Une récupération passive permet de préparer un effort de plus grande qualité (meilleure récupération neuromusculaire) et une récupération active permet de rester concentré pour le prochain effort.

Ci-dessous 3 exemples de travail intermittent effectués au cours de l'année. Ils sont enchaînés avec une récupération équivalente au temps du travail précédent, c'est-à-dire : Intermittent 1 - Récupération 8’ - Intermittent 2 - Récupération 7’ - Intermittent 3.

Figure 16 - Exemple de 3 circuits intermittents
L'intermittent 1 se compose d'un "cycle" bondissement - VMA - Bondissement - Sprint renouvelé 4 fois. Il permet ainsi un travail de qualité pour les sprints et les bondissements. La VMA permet le travail de la récupération nerveuse.

L'intermittent 2 se compose de 3' de bondissements puis 4' de VMA. L'effort lors des bondissements est qualitatif et la VMA permet un travail en aérobie.

Un cycle 2' bondissements-2' VMA répété 2 fois compose l'intermittent 3. Les bondissements permettent un travail local des muscles et une sollicitation nerveuse. Les facteurs aérobies sont assurés par le travail à VMA avec une économie de la périphérie.

-D- Une séance de Drop Jump en "squats"

Ces sauts en contrebas en "squats" sont effectués avec une flexion de cuisse de 90° (voire 150°). Un angle trop marqué, plus petit que 90° est très perturbant et demande un temps de récupération long et ce fait, nous ne le pratiquons jamais.

Le nombre de séries varie de 5 à 10 séries de 8 à 10 répétitions. La récupération entre les séries est de 7 minutes. La hauteur du plinth est personnalisée suite aux tests réalisés précédemment voir le Tableau 7 p28. Nous choisirons la hauteur correspondant au paramètre "force".

-E- Une séance de Préparation Physique Généralisée

Ci-dessous (Figure 17), une séance de préparation physique avec une dominante "bondissements".

La hauteur des plinths ou des bancs varie suivant l'époque de l'année et est individualisée pour chaque athlète. La hauteur correspond au Drop Jump en "quadriceps" (Voir le Tableau 7 p28).

En période de force, on utilise la hauteur correspondant au drop jump "squat" en "force"; en précompétition celle du drop jump "squat" en "force-vitesse" et enfin en période de compétition le paramètre "vitesse" est privilégié.

On passe d'un plinth haut pour le travail en force vers une dominante force-vitesse et enfin en vitesse en période de compétition.
<table>
<thead>
<tr>
<th>Exo 1</th>
<th>Abdo : Gauche-Centre-droit + Gauche en haut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x3</td>
</tr>
<tr>
<td>Level 2</td>
<td>x4</td>
</tr>
<tr>
<td>Level 3</td>
<td>x5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 2</th>
<th>Saut pieds joints en pied : 8H (0,60/0,76/0,84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x5</td>
</tr>
<tr>
<td>Level 2</td>
<td>x7</td>
</tr>
<tr>
<td>Level 3</td>
<td>x10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 3</th>
<th>Pliométrie : 3PJ + (PJ-G/D-D/G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x5</td>
</tr>
<tr>
<td>Level 2</td>
<td>x7</td>
</tr>
<tr>
<td>Level 3</td>
<td>x10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 4</th>
<th>Abdo : Gauche-Centre-droit + Gauche en haut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x3</td>
</tr>
<tr>
<td>Level 2</td>
<td>x4</td>
</tr>
<tr>
<td>Level 3</td>
<td>x5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 5</th>
<th>Lombaires x10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x2</td>
</tr>
<tr>
<td>Level 2</td>
<td>x3</td>
</tr>
<tr>
<td>Level 3</td>
<td>x6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 6</th>
<th>MG dans le sable : 30mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x2</td>
</tr>
<tr>
<td>Level 2</td>
<td>x3</td>
</tr>
<tr>
<td>Level 3</td>
<td>x6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 7</th>
<th>Multisauts : (G-D-G-D) + (D-G-D-G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x5</td>
</tr>
<tr>
<td>Level 2</td>
<td>x6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 8</th>
<th>Multisauts : (G-G-G-G) + (D-D-D-D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x5</td>
</tr>
<tr>
<td>Level 2</td>
<td>x6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 9</th>
<th>Saut pieds joints en pied : 8H (0,60/0,76/0,84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x5</td>
</tr>
<tr>
<td>Level 2</td>
<td>x7</td>
</tr>
<tr>
<td>Level 3</td>
<td>x10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exo 10</th>
<th>Lumbarres x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>x4</td>
</tr>
</tbody>
</table>

Figure 17 - PPG à dominante "bondissements"

Les "level" permettent de faire varier le volume des exercices suivant les cycles et les niveaux de chacun en plus des hauteurs.
-V- Un bilan pliométrique en complément
-A- Les autres tests d'évaluation

Ces autres tests permettent de faire un bilan de la détente, de l'élasticité et de puissance pour chaque athlète. On évalue ainsi l'impact du travail d'un cycle précédent.

Ces 4 tests sont régulièrement effectués après les cycles "force" et "technique". Ces tests ont été réalisés durant les vacances de Février après leur cycle de compétition hivernale.

Les différents indices (voir plus bas) que l'on peut en tirer permettent de rectifier le prochain cycle et d'ajuster le travail de musculation et de renforcement.

Il y a 3 tests pliométriques, 2 pour les cuisses : le Contre Mouvement Jump (CMJ), le CMJ avec l'utilisation des bras (CMJB) et un pour les triceps ; le test de réactivité et le Squat Jump (SJ) qui est un test concentrique.

Suite aux tests, nous déterminons plusieurs coefficients et relations afin de savoir ce que nous devons rectifier en matière de musculation et de renforcement :

- **Indice de puissance des extenseurs de la jambe (les quadriceps, les fessiers et les mollets)**

 C'est la différence entre les meilleures hauteurs du CMJ et du SJ. Un indice supérieur à 10 montre une bonne utilisation de l'énergie élastique emmagasinée et restituée.

 Si l'indice est inférieur, l'athlète a des difficultés à fonctionner de manière pliométrique. Il faut alors faire plus de travail de pliométrie en "cuisse". C'est-à-dire avec une flexion plus marquée au niveau des jambes.

- **Indice de Vittori**

 C'est la différence entre la hauteur de CMJB et la hauteur moyenne des sauts en réactivité. Une différence de 0 indique un bon équilibre entre la force des cuisses et celle des mollets pour un sprinter.

 Si différence est trop élevée alors il faut faire un travail plus orienté sur les cuisses ou les mollets.

- **Indice d'utilisation des bras**

 C'est la différence entre les hauteurs du CMJB et CMJ. Plus cet indice est important et plus le travail des bras est efficace.

 S'il n'y a pas de différence significative, il faut insister sur le travail des bras lors des différences exercices (bondissements, course...) et des exercices de musculation.

- **Indice d'utilisation d'un pré-étirement**

 C'est la différence entre le DJ et le CMJB. Il s'agit de la capacité à utiliser un pré-étirement musculaire dans un saut vertical ou dans un pré-appel. Le drop jump ajoute une composante "vitesse d'étirement" au CMJ.

 Un travail du type banc-sol-banc sera envisagé si la hauteur du drop jump est pratiquement équivalente au CMJB.
Objectifs

<table>
<thead>
<tr>
<th>Exercice</th>
<th>Objectif</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER MOUVEMENT JUMP</td>
<td>Evaluer la force explosive des extenseurs des membres inférieurs (fessiers, quadriceps et triceps) sur un angle donné.</td>
</tr>
<tr>
<td>SQUAT JUMP</td>
<td>Evaluer la force réactive des extenseurs des membres inférieurs (fessiers, quadriceps et triceps) sur un angle donné.</td>
</tr>
<tr>
<td>SAUTS EN REACTIVITE</td>
<td>Evaluer la force explosive des extenseurs des membres inférieurs (fessiers, quadriceps et triceps) sur un angle donné.</td>
</tr>
</tbody>
</table>

Détails d'exécution

<table>
<thead>
<tr>
<th>Exercice</th>
<th>Modalité d'exécution</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER MOUVEMENT JUMP</td>
<td>Position de départ : Debout, jambes tendues avec les mains sur les hanches, mains libres pour le CMJB.</td>
</tr>
<tr>
<td></td>
<td>Réaliser un saut vertical explosif maximal vers le haut sans l'utilisation des bras (sauf pour le CMJB) avec une 1/2 flexion rapide des cuisses , angle droit jambes (triceps sural) / cuisses (Ischios-jambiers) = 90°, préalable à l'extension (le contre-mouvement).</td>
</tr>
<tr>
<td>SQUAT JUMP</td>
<td>Position de départ : Debout, jambes tendues avec les mains sur les hanches.</td>
</tr>
<tr>
<td></td>
<td>Réaliser un saut vertical explosif maximal vers le haut sans l'utilisation des bras.</td>
</tr>
<tr>
<td>SAUTS EN REACTIVITE</td>
<td>Position de départ : Debout, jambes tendues. On exécute 1 saut en dehors du tapis pour éviter que le "démarrage" ne fausse le résultat.</td>
</tr>
<tr>
<td></td>
<td>Réaliser 6 sauts verticaux réactifs enchaînés d'intensité maximale avec l'utilisation des bras.</td>
</tr>
</tbody>
</table>

Modalité de validité

<table>
<thead>
<tr>
<th>Exercice</th>
<th>Modalité de validité</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER MOUVEMENT JUMP</td>
<td>Ne pas plier les jambes en dépassant la 1/2 flexion. Banir tout mouvement préparatoire vers le bas.</td>
</tr>
<tr>
<td></td>
<td>Éviter les bras libres sur les hanches sauf pour le CMJB (bras libre)</td>
</tr>
<tr>
<td></td>
<td>Ne pas avoir les jambes fléchies en reception car sinon augmentation du temps de suspension</td>
</tr>
<tr>
<td></td>
<td>Ne pas chercher à faire un bond "trop" vers l'avant</td>
</tr>
<tr>
<td>SQUAT JUMP</td>
<td>Pas de contact du talon avec le sol lors des rebonds mais uniquement la plante du pied afin d'éviter une flexion des genoux et du bassin et donc de faire intervenir les cuisses et les fessiers.</td>
</tr>
<tr>
<td></td>
<td>Ne pas effectuer de mouvement préparatoire vers le bas</td>
</tr>
<tr>
<td></td>
<td>Ne pas avoir les jambes fléchies en reception car sinon augmentation du temps de suspension</td>
</tr>
<tr>
<td></td>
<td>Ne pas chercher à faire un bond "trop" vers l'avant</td>
</tr>
<tr>
<td>SAUTS EN REACTIVITE</td>
<td>Ne pas chercher à faire un bond "trop" vers l'avant</td>
</tr>
</tbody>
</table>

Paramètres mesurés

<table>
<thead>
<tr>
<th>Exercice</th>
<th>Paramètres mesurés</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER MOUVEMENT JUMP</td>
<td>Hauteur du rebond (en m) Moyenne de la hauteur des rebonds (en m)</td>
</tr>
<tr>
<td>SQUAT JUMP</td>
<td>Temp d'envol (en sec)</td>
</tr>
<tr>
<td>SAUTS EN REACTIVITE</td>
<td>Time of flight (in sec)</td>
</tr>
</tbody>
</table>

Détermination de coefficients

<table>
<thead>
<tr>
<th>Exercice</th>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER MOUVEMENT JUMP</td>
<td>Indice de l'utilisation d'un pré-étirement. (DJ-CMJB) Indice d'utilisation des bras. (DJ-CMJB-CMJ)</td>
</tr>
<tr>
<td>SQUAT JUMP</td>
<td>Indice de la puissance des jambes. (CMJB-SJ)</td>
</tr>
<tr>
<td>SAUTS EN REACTIVITE</td>
<td>Indice de Vittori. (CMJB - Test de réactivité)</td>
</tr>
</tbody>
</table>

Figure 18 - Modalités des tests de Counter mouvement jump, de Squat Jump et de réactivité

-B- Les résultats

Ci-dessous, nous avons le tableau récapitulatif des exercices de pliométrie décrits dans la partie précédente avec la hauteur du rebond, le temps d'envol et les différents indices.
L'indice de puissance des cuisses et l'indice d'utilisation d'un pré-étirement ne sont pas concluants : on s'aperçoit que la plupart des athlètes ont du mal à restituer l'énergie emmagasinée suite à un pré-étirement, que ce soit une simple flexion à 90° de la jambe ou un saut en contrebas (de 45 cm à 1m16).

C'est certainement un axe de travail à revoir surtout pour les sauteurs (Benjamin, Madeleine et Guillaume). Des séances de pliométrie "moyenne" avec une flexion des cuisses sont à envisager en plus grand nombre (banc à banc, drop jump, haies etc.). Nous avons refait des tests en avril et la tendance a légèrement changée mais il faut encore y travailler.

L'indice de Vittori est une donnée importante pour les sprinters. Là encore, on distingue une différence notable entre la force réactive des cuisses et des mollets.

Le travail de la force maximale des mollets a rencontré 2 problèmes depuis le début d'année.

En effet, dans une séance de musculation type, le déroulement était le suivant: Squats puis Développé couché et enfin le travail de triceps. Il nous manquait régulièrement du temps pour terminer la séance alors nous retirions des séries du travail de mollet.

Le 2ème souci est le fait de ne pas avoir assez de poids pour réellement travailler en force maximale ni sur la presse oblique ni avec les barres.

Suite à ce constat nous avons changé l'organisation des séances (le travail des bras est effectué pendant le temps de repos des squats) et nous avons eu le temps de terminer la musculation des triceps. Les tests d'avril le prouvent et cet indicateur est désormais au vert sauf encore Nicolas (qui s'en rapproche).

On peut remarquer, pour la moitié d'entre eux, que le travail des bras est relativement efficace (voir l'indice d'utilité des bras). Mais que pour les filles et Guillaume, il faudra plus insister sur la coordination, la fréquence et l'amplitude de la gestuel des bras. Un travail de renforcement des bras est à envisager.
-C- Un bilan individualisé

Ci-dessous, une fiche personnalisée de chaque athlète est présentée suite aux différents exercices que ce soit les "drop jump", le banc debout ou les autres tests en complément.
Conclusion
On a pu voir que la fiabilité des exercices proposés et surtout de leur validité pouvait être difficile à évaluer du fait d'une exécution rapide des sauts surtout pour le banc debout qui en plus est un exercice complexe.

Malgré tout, une fois les modalités d'exécution définis à savoir des bondissements avec une orientation type "vitesse," "force" ou "force-vitesse", nous avons pu déterminer une hauteur pour chacun et pour chaque exercice.

Certes la mise en place d'un tel degré d'individualisation nécessite une certaine quantité de plinths (ce qui ne manque pas dans notre CREPS de Strasbourg) pour appliquer tous ces résultats.

On a pu constater des hauteurs très variables au cours d'un même exercice malgré un niveau similaire des athlètes (du point de vue des performances). Ceci me renforce dans l'idée qu'une individualisation des exercices était nécessaire.

Je me suis aidé des sensations de chacun pour savoir si nous étions dans le "vrai" afin de vérifier l'efficacité du travail. Par exemple pour l'exercice du type banc-sol-banc en pieds, chaque athlète a pu exploiter pleinement ces capacités et on tous travailler avec la même orientation.

Certes, il est tout de même difficile d'évaluer si le travail d'individualisation porte réellement ces fruits car il est impossible d'isoler ces exercices du reste des entraînements.

Une amélioration générale des performances sur le terrain a été constatée (différents tests de vitesse, de bondissements et résultats en compétition).

Je pense que la recherche des indicateurs d'entraînement personnels est certainement une des clés de la préparation physique afin de savoir exactement ce que l'on est en train de travailler.

Les drops jumps en cuisse pourraient être travaillés avec d'autres angles de flexion que 90° (plus et moins). Ici les tests avaient comme dominante la hauteur du rebond, on pourrait faire les même avec une dominante vitesse d'impulsion.

Il serait intéressant par la suite de recouper toutes les données : les tests de musculation (squat et travail de triceps), les tests de vitesse, les tests sur tapis type Bosco que l'on a précédemment présenté et les données morphologiques (poids et taille).

Ainsi on pourrait essayer de déterminer des corrélations entre toutes ces données et de prédire les hauteurs pour des sauts en contrebas même sans matériel.
Bibliographie

Ouvrages

Multimédia

Cometti, G. (1990) *les méthodes de musculation* : cassette VHS (45 min)
Cometti, G. (1996) *les bondissements dans la théorie Piron* : cassette VHS (45 min)
Cometti, G. (1996) *musculation et sports collectifs* : cassette VHS (45 min)

Colloques

Ontanon G. (2004) *Approche de l' entraînememt du 100m et du 200m*. Strasbourg

Liens Internet

http://www.coachr.org/tpjrs.htm

http://www.brianmac.demon.co.uk/index.htm
Un site pour les "coachs" de la programmation aux différents exercices (pliométrie etc.)

http://gladstone.uoregon.edu/~j15/index.htm
Un site sur les divers exercices de pliométrie avec des photos et des vidéos, sur la physiologie et la littérature relatant de la pliométrie.

http://www.locusport.com
Site sur la préparation physique et mentale en sport collectif avec en particulier un dossier sur le pliométrie.
Annexes

DROP JUMP - Sauts en contrebas “en Squats“

<table>
<thead>
<tr>
<th>Nom</th>
<th>1) Hauteur de chute (m)</th>
<th>2) Durée impulsion (sec)</th>
<th>3) Hauteur de rebond (m)</th>
<th>Coeff. de réactivité = 3/2</th>
<th>Coeff. de restitution = 3/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,523</td>
<td>0,537</td>
<td>0,56</td>
<td>0,59</td>
<td>0,613</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,00956</td>
<td>#DIV/0!</td>
<td>1,042831</td>
<td>0,858075</td>
<td>0,9625</td>
</tr>
<tr>
<td>Coeff. de restitution = 3/1</td>
<td>1,173333</td>
<td>0</td>
<td>0,8</td>
<td>0,584444</td>
<td>0,539</td>
</tr>
<tr>
<td>Nicolas B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,421</td>
<td>0,534</td>
<td>0,56</td>
<td>0,59</td>
<td>0,62</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,472684</td>
<td>#DIV/0!</td>
<td>1,144195</td>
<td>0,921095</td>
<td>0,933929</td>
</tr>
<tr>
<td>Coeff. de restitution = 3/1</td>
<td>1,377778</td>
<td>0</td>
<td>0,872857</td>
<td>0,635556</td>
<td>0,523</td>
</tr>
<tr>
<td>Ariane A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,424</td>
<td>0,411</td>
<td>0,487</td>
<td>0,488</td>
<td>0,513</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,356132</td>
<td>#DIV/0!</td>
<td>1,360097</td>
<td>1,137295</td>
<td>0,97271</td>
</tr>
<tr>
<td>Coeff. de restitution = 3/1</td>
<td>1,277778</td>
<td>0</td>
<td>0,79571</td>
<td>0,616667</td>
<td>0,430172</td>
</tr>
<tr>
<td>Adrien B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,421</td>
<td>0,534</td>
<td>0,56</td>
<td>0,59</td>
<td>0,62</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,356132</td>
<td>#DIV/0!</td>
<td>1,360097</td>
<td>1,137295</td>
<td>0,97271</td>
</tr>
<tr>
<td>Coeff. de restitution = 3/1</td>
<td>1,277778</td>
<td>0</td>
<td>0,79571</td>
<td>0,616667</td>
<td>0,430172</td>
</tr>
<tr>
<td>Gwendoline P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,424</td>
<td>0,411</td>
<td>0,487</td>
<td>0,488</td>
<td>0,513</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,356132</td>
<td>#DIV/0!</td>
<td>1,360097</td>
<td>1,137295</td>
<td>0,97271</td>
</tr>
<tr>
<td>Coeff. de restitution = 3/1</td>
<td>1,277778</td>
<td>0</td>
<td>0,79571</td>
<td>0,616667</td>
<td>0,430172</td>
</tr>
<tr>
<td>Madeleine A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,424</td>
<td>0,411</td>
<td>0,487</td>
<td>0,488</td>
<td>0,513</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,356132</td>
<td>#DIV/0!</td>
<td>1,360097</td>
<td>1,137295</td>
<td>0,97271</td>
</tr>
<tr>
<td>Coeff. de restitution = 3/1</td>
<td>1,277778</td>
<td>0</td>
<td>0,79571</td>
<td>0,616667</td>
<td>0,430172</td>
</tr>
<tr>
<td>Emmanuel N.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,424</td>
<td>0,411</td>
<td>0,487</td>
<td>0,488</td>
<td>0,513</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,356132</td>
<td>#DIV/0!</td>
<td>1,360097</td>
<td>1,137295</td>
<td>0,97271</td>
</tr>
<tr>
<td>Coeff. de restitution = 3/1</td>
<td>1,277778</td>
<td>0</td>
<td>0,79571</td>
<td>0,616667</td>
<td>0,430172</td>
</tr>
<tr>
<td>Guillaume B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>0,424</td>
<td>0,411</td>
<td>0,487</td>
<td>0,488</td>
<td>0,513</td>
</tr>
<tr>
<td>Coeff. de réactivité = 3/2</td>
<td>1,356132</td>
<td>#DIV/0!</td>
<td>1,360097</td>
<td>1,137295</td>
<td>0,97271</td>
</tr>
<tr>
<td>Coeff. of restitution = 3/1</td>
<td>1,277778</td>
<td>0</td>
<td>0,79571</td>
<td>0,616667</td>
<td>0,430172</td>
</tr>
</tbody>
</table>

Annexe 1 - Résultats bruts des sauts en contrebas en "cuisses"

Essai d'individualisation et d'optimisation de certains exercices de pliométrie en athlétisme - Nicolas DELPECH
Essai d'individualisation et d'optimisation de certains exercices de pliométrie en athlétisme - Nicolas DELPECH

DROP JUMP - Sauts en contrebas “en Pieds”

<table>
<thead>
<tr>
<th>Benjamin C.</th>
<th>1) Hauteur de chute (m)</th>
<th>0,13</th>
<th>0,23</th>
<th>0,33</th>
<th>0,42</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,69</td>
<td>0,7</td>
<td>0,75</td>
<td>0,73</td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,313</td>
<td>0,315</td>
<td>0,393</td>
<td>0,36</td>
<td>0,412</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,453623</td>
<td>0,45</td>
<td>0,524</td>
<td>0,493151</td>
<td>0,542105</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>2,407692</td>
<td>1,369565</td>
<td>1,190909</td>
<td>0,857143</td>
<td>0,824</td>
</tr>
<tr>
<td>Nicolas B.</td>
<td>1) Hauteur de chute (m)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,33</td>
<td>0,42</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,56</td>
<td>0,58</td>
<td>0,61</td>
<td>0,68</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,2</td>
<td>0,224</td>
<td>0,257</td>
<td>0,324</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,357143</td>
<td>0,386207</td>
<td>0,421311</td>
<td>0,476471</td>
<td>0,454545</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>1,538462</td>
<td>0,973913</td>
<td>0,778788</td>
<td>0,771429</td>
<td>0,6</td>
</tr>
<tr>
<td>Ariane A.</td>
<td>1) Hauteur de chute (m)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,33</td>
<td>0,42</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,58</td>
<td>0,66</td>
<td>0,61</td>
<td>0,66</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,22</td>
<td>0,242</td>
<td>0,253</td>
<td>0,29</td>
<td>0,375</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,37931</td>
<td>0,366667</td>
<td>0,414754</td>
<td>0,439394</td>
<td>0,528169</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>1,692308</td>
<td>1,052174</td>
<td>0,766667</td>
<td>0,690476</td>
<td>0,75</td>
</tr>
<tr>
<td>Adrien B.</td>
<td>1) Hauteur de chute (m)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,33</td>
<td>0,42</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,78</td>
<td>0,79</td>
<td>0,73</td>
<td>0,78</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,39</td>
<td>0,407</td>
<td>0,364</td>
<td>0,421</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,5</td>
<td>0,51519</td>
<td>0,49863</td>
<td>0,539744</td>
<td>0,551282</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>3</td>
<td>1,769565</td>
<td>1,10303</td>
<td>1,002381</td>
<td>0,86</td>
</tr>
<tr>
<td>Gwendoline P.</td>
<td>1) Hauteur de chute (m)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,33</td>
<td>0,42</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,48</td>
<td>0,69</td>
<td>0,6</td>
<td>0,55</td>
<td>0,56</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,139</td>
<td>0,236</td>
<td>0,234</td>
<td>0,179</td>
<td>0,191</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,289583</td>
<td>0,342029</td>
<td>0,39</td>
<td>0,325455</td>
<td>0,341071</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>1,068231</td>
<td>1,026087</td>
<td>0,709091</td>
<td>0,42619</td>
<td>0,382</td>
</tr>
<tr>
<td>Madeleine A.</td>
<td>1) Hauteur de chute (m)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,33</td>
<td>0,42</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,66</td>
<td>0,68</td>
<td>0,68</td>
<td>0,66</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,298</td>
<td>0,282</td>
<td>0,313</td>
<td>0,271</td>
<td>0,339</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,451515</td>
<td>0,414706</td>
<td>0,460294</td>
<td>0,410606</td>
<td>0,477465</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>2,292308</td>
<td>1,226087</td>
<td>0,948485</td>
<td>0,645238</td>
<td>0,678</td>
</tr>
<tr>
<td>Emmanuel N.</td>
<td>1) Hauteur de chute (m)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,33</td>
<td>0,42</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,58</td>
<td>0,59</td>
<td>0,65</td>
<td>0,76</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,203</td>
<td>0,18</td>
<td>0,266</td>
<td>0,369</td>
<td>0,306</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,35</td>
<td>0,305085</td>
<td>0,409231</td>
<td>0,485526</td>
<td>0,430986</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>1,561538</td>
<td>0,782609</td>
<td>0,806061</td>
<td>0,878571</td>
<td>0,612</td>
</tr>
<tr>
<td>Guillaume B.</td>
<td>1) Hauteur de chute (m)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,33</td>
<td>0,42</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2) Durée impulsion (sec)</td>
<td>0,68</td>
<td>0,73</td>
<td>0,73</td>
<td>0,78</td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td>3) Hauteur de rebond (m)</td>
<td>0,286</td>
<td>0,321</td>
<td>0,342</td>
<td>0,347</td>
<td>0,352</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de réactivité = 3/2</td>
<td>0,420588</td>
<td>0,439726</td>
<td>0,468493</td>
<td>0,444872</td>
<td>0,463158</td>
</tr>
<tr>
<td></td>
<td>Coeffic. de restitution = 3/1</td>
<td>2,2</td>
<td>1,395652</td>
<td>1,036364</td>
<td>0,82619</td>
<td>0,704</td>
</tr>
</tbody>
</table>

Annexe 2 - Résultats bruts des sauts en contrebas en “mollets”
<table>
<thead>
<tr>
<th>Nom</th>
<th>Hauteur de chute (m)</th>
<th>Angle du genou</th>
<th>Hauteur de rebond (m)</th>
<th>Durée impulsion (sec)</th>
<th>Coeff. de réactivité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin</td>
<td>0,26</td>
<td>117°</td>
<td>0,68</td>
<td>1,03</td>
<td>0,660194</td>
</tr>
<tr>
<td>C.</td>
<td>0,32</td>
<td>110°</td>
<td>0,71</td>
<td>1,04</td>
<td>0,682692</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>94°</td>
<td>0,94</td>
<td>1,14</td>
<td>0,824561</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td>89°</td>
<td>1,04</td>
<td>1,17</td>
<td>0,888889</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td>1,04</td>
<td>1,22</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td>1,18</td>
<td>0,824594</td>
</tr>
<tr>
<td>Nicolas B.</td>
<td>0,26</td>
<td>114°</td>
<td>0,64</td>
<td>1,02</td>
<td>0,627451</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td>108°</td>
<td>0,72</td>
<td>1,09</td>
<td>0,66055</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>92°</td>
<td>0,91</td>
<td>1,15</td>
<td>0,791304</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td></td>
<td>1,17</td>
<td>0,824561</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td></td>
<td></td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Ariane A.</td>
<td>0,26</td>
<td>111°</td>
<td>0,51</td>
<td>0,88</td>
<td>0,579576</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td>99°</td>
<td>0,58</td>
<td>0,93</td>
<td>0,627451</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>96°</td>
<td>0,61</td>
<td>0,89</td>
<td>0,791304</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,6</td>
<td>0,94</td>
<td>0,824561</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td></td>
<td>0,96</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Adrien B.</td>
<td>0,26</td>
<td>96°</td>
<td>0,52</td>
<td>0,91</td>
<td>0,571429</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td></td>
<td>0,62</td>
<td>0,91</td>
<td>0,627451</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td></td>
<td>0,72</td>
<td>0,98</td>
<td>0,791304</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,73</td>
<td>1,03</td>
<td>0,824561</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td>0,83</td>
<td>1,05</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td>0,76</td>
<td>1,05</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,01</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Gwendoline</td>
<td>0,26</td>
<td>110°</td>
<td>0,61</td>
<td>0,91</td>
<td>0,571429</td>
</tr>
<tr>
<td>P.</td>
<td>0,32</td>
<td>100°</td>
<td>0,61</td>
<td>0,91</td>
<td>0,627451</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>92°</td>
<td>0,62</td>
<td>0,91</td>
<td>0,791304</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,65</td>
<td>0,96</td>
<td>0,824561</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td>0,8</td>
<td>0,98</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td>1,05</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Xavier P.</td>
<td>0,26</td>
<td>118°</td>
<td>0,61</td>
<td>0,91</td>
<td>0,571429</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td>106°</td>
<td>0,61</td>
<td>0,91</td>
<td>0,627451</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>103°</td>
<td>0,62</td>
<td>0,91</td>
<td>0,791304</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,65</td>
<td>0,91</td>
<td>0,824561</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td>0,8</td>
<td>0,96</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td>1,05</td>
<td>0,852459</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Emmanuel N.</td>
<td>0,26</td>
<td>115°</td>
<td>0,64</td>
<td>1,04</td>
<td>0,635417</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td>110°</td>
<td>0,67</td>
<td>1,03</td>
<td>0,603947</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>103°</td>
<td>0,74</td>
<td>1,08</td>
<td>0,632656</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,78</td>
<td>1,06</td>
<td>0,761905</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td>0,88</td>
<td>1,09</td>
<td>0,733333</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td>1,16</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Guillaume B.</td>
<td>0,26</td>
<td>115°</td>
<td>0,64</td>
<td>1,04</td>
<td>0,635363</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td>107°</td>
<td>0,73</td>
<td>1,05</td>
<td>0,695238</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>100°</td>
<td>0,76</td>
<td>1,09</td>
<td>0,697248</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,74</td>
<td>1,12</td>
<td>0,707443</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td>0,91</td>
<td>1,16</td>
<td>0,807399</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td>1,2</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Marion A.</td>
<td>0,26</td>
<td>108°</td>
<td>0,52</td>
<td>0,91</td>
<td>0,633663</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td>99,5°</td>
<td>0,61</td>
<td>0,91</td>
<td>0,695238</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>92°</td>
<td>0,66</td>
<td>0,91</td>
<td>0,697248</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,71</td>
<td>1,07</td>
<td>0,707443</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td>0,85</td>
<td>1,07</td>
<td>0,807399</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
<td>1,07</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>Nicolas W.</td>
<td>0,26</td>
<td>112°</td>
<td>0,54</td>
<td>1,07</td>
<td>0,504673</td>
</tr>
<tr>
<td></td>
<td>0,32</td>
<td>102,5°</td>
<td>0,65</td>
<td>1,09</td>
<td>0,59633</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>94°</td>
<td>0,71</td>
<td>1,15</td>
<td>0,6173911</td>
</tr>
<tr>
<td></td>
<td>0,45</td>
<td></td>
<td>0,8</td>
<td>1,12</td>
<td>0,714286</td>
</tr>
<tr>
<td></td>
<td>0,52</td>
<td></td>
<td></td>
<td>0</td>
<td>#DIV/0!</td>
</tr>
</tbody>
</table>

Annexe 3 - Résultats bruts des bancs debouts