1. : (Petites mines 96) Soit $f \in \mathcal{L}\left(\mathbb{K}^4\right)$ définie par $f(\overrightarrow{e}_1) = f(\overrightarrow{e}_2) = \overrightarrow{e}_1 - \overrightarrow{e}_2$, $f(\overrightarrow{e}_3) = -f(\overrightarrow{e}_4) = \overrightarrow{e}_3 - \overrightarrow{e}_4$; $((\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3, \overrightarrow{e}_4)$ est la base canonique de \mathbb{K}^4).

(a) Déterminer
$$f \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$
, $f^2(\overrightarrow{e}_1)$, $f^2(\overrightarrow{e}_2)$, $f^2(\overrightarrow{e}_3)$, $f^2(\overrightarrow{e}_4)$ et $f^2 \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$.

(b) Remplir le tableau:

	base	représentation paramétrique	système d'éq. cartésiennes
$\ker f$	$(\overrightarrow{e}_1 - \overrightarrow{e}_2, \dots)$		
$\operatorname{Im} f$			
$\ker f^2$			
$\mathrm{Im}f^2$			

- (c) Vérifier que que dim Ker $f + \dim \operatorname{Im} f = \dim \mathbb{K}^4$, mais que par contre Ker $f + \operatorname{Im} f \neq \mathbb{K}^4$ (attention au faux théorème du rang!), tandis que $\mathbb{K}^4 = \operatorname{Ker} f^2 \oplus \operatorname{Im} f^2$.
- 2. Soient $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ et $g \in \mathcal{L}(\mathbb{F}, \mathbb{G})$ où $\mathbb{E}, \mathbb{F}, \mathbb{G}$ sont trois \mathbb{K} -espaces vectoriels.
 - (a) Montrer que $g \circ f = 0$ si et seulement si $\operatorname{Im} f \subset \operatorname{Ker} g$.
 - (b) Comparer vis-à-vis de l'inclusion $\operatorname{Ker}(g \circ f)$ et $\operatorname{Ker} f$, $\operatorname{Im}(g \circ f)$ et $\operatorname{Im} g$.
- 3. Soient $f, g \in \mathcal{L}(\mathbb{E}, \mathbb{F})$;
 - (a) Montrer que $\operatorname{Im}(f+g) \subset \operatorname{Im}(f) + \operatorname{Im}(g)$.
 - (b) Donner un exemple très simple où $\operatorname{Im}(f+g) \neq \operatorname{Im}(f) + \operatorname{Im}(g)$.
- 4. Soit $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$, \mathcal{F} une famille finie d'éléments de \mathbb{E} .
 - (a) Montrer que si \mathcal{F} est liée, $f(\mathcal{F})$ est liée. Contraposée de cette implication ?
 - (b) Montrer que si \mathcal{F} est génératrice (de \mathbb{E}), $f(\mathcal{F})$ est génératrice de Im f.
- 5. :
 - (a) Donner, si c'est possible, un exemple d'endomorphisme de \mathbb{K}^2
 - i. dont le noyau est réduit à $\{(0,0)\}$.
 - ii. dont le noyau et l'image sont non nuls et distincts.
 - iii. dont le noyau est égal à l'image.
 - iv. dont le noyau est égal à \mathbb{K}^2 .
 - (b) Mêmes questions dans \mathbb{K}^3 , puis dans \mathbb{K}^n .
- 6. : Soit $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$; avec \mathbb{E}, \mathbb{F} espaces vectoriels sur \mathbb{K} ; \mathbb{E} de dimension n, \mathbb{F} de dimension p. Dire pour chacune des phrases suivantes, si elle caractérise l'injectivité, la surjectivité ou la bijectivité de f.
 - (a) L'image de toute famille libre est libre.
 - (b) Im $f = \mathbb{F}$.
 - (c) L'image d'une base de \mathbb{E} est génératrice de \mathbb{F} .

- (d) $\operatorname{rg} f = n$.
- (e) L'image d'une base de \mathbb{E} est libre.
- (f) $\operatorname{rg} f = p$
- (g) L'image d'une base de \mathbb{E} est une base de \mathbb{F} .
- (h) L'image de toute famille génératrice de $\mathbb E$ est génératrice de $\mathbb F$.
- 7. :
 - (a) Soit $D: \left| \begin{array}{c} \mathbb{K}[X] \to \mathbb{K}[X] \\ P \mapsto P' \end{array} \right|$,
 - i. Montrer que D est un endomorphisme de $\mathbb{K}[X]$ surjectif mais pas injectif. Est-ce contradictoire?
 - ii. Trouver un endomorphisme de $\mathbb{K}[X]$ injectif mais pas surjectif.
 - (b) Soit $D_n: \left| \begin{array}{c} \mathbb{K}_n\left[X\right] \to \mathbb{K}_n\left[X\right] \\ P \mapsto P' \end{array} \right|$. Vérifier qu'on a bien :

$$\operatorname{rg} D_n + \dim \operatorname{Ker} D_n = \dim \mathbb{K}_n [X]$$

- 8. : Soit T un réel fixé, et $\mathbb{E} = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \cap \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ est périodique de période } T \}$.
 - (a) Vérifier que si $f \in \mathbb{E}$, alors f' également. Soit D l'endomorphisme : $\begin{vmatrix} \mathbb{E} \to \mathbb{E} \\ f \mapsto f' \end{vmatrix}$
 - (b) Déterminer Ker D.
 - (c) Soit $g \in \mathbb{E}$; montrer que $g \in \text{Im } D$ si et seulement si $\int_{0}^{T} g(x) \, dx = 0$.
 - (d) Montrer que $\mathbb{E} = \operatorname{Ker} D \oplus \operatorname{Im} D$.
- 9. : Caractérisations des homothéties.
 - (a) Démontrer que les homothéties sont les seuls endomorphismes f de \mathbb{E} tels que :

$$\forall \overrightarrow{x} \in \mathbb{E} \quad \exists \alpha_{\overrightarrow{x}} \in \mathbb{K} \quad f(\overrightarrow{x}) = \alpha_{\overrightarrow{x}} \quad \overrightarrow{x}$$

- Indication : démontrer que $\alpha_{\overrightarrow{x}} = \alpha_{\overrightarrow{y}}$, d'abord dans le cas $(\overrightarrow{x}, \overrightarrow{y})$ libre, puis dans le cas $(\overrightarrow{x}, \overrightarrow{y})$ lié avec \overrightarrow{x} et \overrightarrow{y} non nuls.
- (b) En déduire que les homothéties sont les seuls endomorphismes de \mathbb{E} qui commutent avec tout autre endomorphisme (on pourra considérer une projection sur Vect (\overrightarrow{x})).
- (c) ** Généralisation de (a). Montrer que si $f, g \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ vérifient $\forall \overrightarrow{x} \in \mathbb{E} \quad \exists \alpha(\overrightarrow{x}) \in \mathbb{K} \quad f(\overrightarrow{x}) = \alpha(\overrightarrow{x})g(\overrightarrow{x})$, alors $\exists \alpha \in \mathbb{K} \quad f = \alpha g$.
- 10. : Soit \mathbb{P} un plan vectoriel ; on va montrer que si f est un endomorphisme de \mathbb{P} qui n'est pas une homothétie, tout endomorphisme qui commute avec f est de la forme $\alpha id_E + \beta f$.
 - (a) En utilisant le 9. (a) montrer qu'il existe $\overrightarrow{x_0}$ de \mathbb{P} tel que $\mathcal{B} = (\overrightarrow{x_0}, f(\overrightarrow{x_0}))$ soit une base de \mathbb{P} .
 - (b) Soit g un endomorphisme commutant avec f; exprimer $g(\overrightarrow{x_0})$ dans \mathcal{B} , puis $g(f(\overrightarrow{x_0}))$ et en déduire que g est de la forme $\alpha id_E + \beta f$.
 - (c) En déduire que (id_E, f, f^2) est liée.
 - Attention, ceci n'est valable qu'en dimension 2; on peut trouver en dimension supérieure des endomorphismes f qui ne sont pas des homothéties tels qu'il existe un endomorphisme commutant avec f et qui n'est pas un polynôme en f (cf. exercice 4. (c) sur les matrices).

11. : Début ENSI 1975

: Debut ENSI 1975

On donne la matrice
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 10 \\ 4 & 7 & 12 \end{bmatrix}$$
.

Soit f_A l'application linéaire de \mathbb{K}^3 dans \mathbb{K}^4 dont la matrice associée, relativement aux bases canoniques $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de \mathbb{K}^3 et $(\overrightarrow{i'}, \overrightarrow{j'}, \overrightarrow{k'}, \overrightarrow{l'})$ de \mathbb{K}^4 est A.

- (a) Déterminer $\operatorname{Ker} f_A$ et en déduire $\operatorname{rg} f_A$.
- (b) Déterminer une base de Im f_A dont les vecteurs n'ont que des coordonnées égales à 0 ou à 1. Soit $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ cette base.
- (c) Que dire de la restriction g de f_A à Im f_A (pour l'ensemble d'arrivée) ? Déterminer la matrice de g relativement à la base canonique $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de \mathbb{K}^3 et à la base $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ de Im f_A .

12. Soit
$$\mathcal{F} = (\vec{x_1}, ..., \vec{x_p})$$
 une famille de p vecteurs de \mathbb{E} , et $f : \begin{pmatrix} \mathbb{K}^p \to \mathbb{E} \\ \lambda_1 \\ \vdots \\ \lambda_p \end{pmatrix} \mapsto \sum_{k=1}^p \lambda_k \vec{x_k}$

- (a) Vérifier que f est linéaire.
- (b) Montrer que \mathcal{F} est libre ssi f est injective, et que \mathcal{F} est génératrice ssi f est surjective.
- (c) Soit N l'ensemble des $(\lambda_1, ..., \lambda_p) \in \mathbb{K}^p$ tels que $\sum_{k=1}^p \lambda_k \overrightarrow{x_k} = \overrightarrow{0}$. Pourquoi est-ce un sev de \mathbb{E} ?
- (d) Si $rg(\mathcal{F}) = p$, que dire de N?
- (e) Déterminer $\dim N$ en fonction de p et $rg(\mathcal{F})$.
- (f) Si $rg(\mathcal{F}) = p 1$, montrer que les éléments de N sont proportionnels entre eux.
- (g) Déterminer une base de N quand

$$\vec{x_1} = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 1 \end{pmatrix}; \vec{x_2} = \begin{pmatrix} 2 \\ 1 \\ -3 \\ 1 \end{pmatrix}; \vec{x_3} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}; \vec{x_4} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}; \vec{x_5} = \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \end{pmatrix}$$

13. : Utilisation des applications linéaires dans les équations différentielles linéaires.

Soient $a,b \in \mathbb{R}$ avec $b \neq 0$ et $P_0 \in \mathbb{R}_n[X]$. En étudiant l'application linéaire $\begin{vmatrix} \mathbb{R}_n[X] \to \mathbb{R}_n[X] \\ P \mapsto P'' + aP' + bP \end{vmatrix}$, montrer que l'équation différentielle linéaire $y'' + ay' + by = P_0$ possède une unique solution polynomiale de degré inférieur ou égal à n.

14. : Donner la matrice relativement aux bases canoniques des applications linéaires suivantes :

- (a) Symétrie s de \mathbb{K}^4 de base $\operatorname{Vect}\left(\overrightarrow{e_1} + \overrightarrow{e_2}, \overrightarrow{e_3} + \overrightarrow{e_4}\right)$ et de direction $\operatorname{Vect}\left(\overrightarrow{e_1} \overrightarrow{e_2}, \overrightarrow{e_3} \overrightarrow{e_4}\right)$ $\left(\left(\left(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4}\right)\right)\right)$ est la base canonique de \mathbb{K}^4 .
- (b) Application $D: \mathbb{K}_n[X] \to \mathbb{K}_{n-1}[X], P \mapsto P'$
- (c) Application $f: \mathbb{K}_n[X] \to \mathbb{K}_{n+1}[X], P(X) \mapsto X.P(X)$
- (d) Application $f: \mathbb{K}_n[X] \to \mathbb{K}_n[X]$, $P(X) \mapsto P(X+1)$
- (e) Application $f: \mathbb{K}_n[X] \to \mathbb{K}_{2n}[X], \quad P(X) \mapsto P(X^2)$
- (f) Application $T: \mathfrak{M}_2(\mathbb{K}) \to \mathfrak{M}_2(\mathbb{K})$, $M \mapsto^t M$; * généraliser à $\mathfrak{M}_n(\mathbb{K})$.
- (g) Application $f: \mathfrak{M}_2(\mathbb{K}) \to \mathfrak{M}_2(\mathbb{K})$, $M \mapsto AM$ (A matrice carrée fixée) et application $g: \mathfrak{M}_2(\mathbb{K}) \to \mathfrak{M}_2(\mathbb{K})$, $M \mapsto MA$; * généraliser à $\mathfrak{M}_n(\mathbb{K})$.

- (h) Application $f: \mathbb{K}_2[X] \times \mathbb{K}_2[X] \to \mathbb{K}_2[X]$, $(P,Q) \mapsto P Q$.
- 15. : Soit $\mathcal{B} = (\overrightarrow{i}, \overrightarrow{j})$ une base d'un espace vectoriel de dimension 2. Les matrices suivantes sont les matrices d'endomorphismes f_k de \mathbb{E} , relativement à \mathcal{B} .

On demande dans chacun des cas :

- de faire une figure avec $(\overrightarrow{i}, \overrightarrow{j})$ orthonormée, $(f_k(\overrightarrow{i}), f_k(\overrightarrow{j}))$ de donner les expressions analytiques définissant f_k
- de construire l'image d'un vecteur \overrightarrow{u} quelconque
- de reconnaître f_k géométriquement.

(a)
$$M_1 = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

(b)
$$M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(c)
$$M_3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

(d)
$$M_4 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

(e)
$$M_5 = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

(f)
$$M_6 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

(g)
$$M_7 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

16. (extrait de ENSI oral):

Pour quelles valeurs de n l'application $f: P \mapsto (2X+1)P - (X^2-1)P'$ définit-elle un endomorphisme de $\mathbb{K}_n[X]$? En donner la matrice canonique dans ce cas.

17. * : Suites exactes et nouvelle démonstration de la relation de Grassmann.

Soit la suite d'applications linéaires : $\mathbb{E}_1 \xrightarrow{f_1} \mathbb{E}_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} \mathbb{E}_{n-1} \xrightarrow{f_n} \mathbb{E}_n$

On dit que cette suite est exacte si $\operatorname{Im} f_i = \operatorname{Ker} f_{i+1}$ pour i = 1, ..., n-1.

- (a) Soit $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$. Prouver que
 - i. f est injective si et seulement si $\{\vec{0}\} \to \mathbb{E} \xrightarrow{f} \mathbb{F}$ est exacte. (remarque : il n'y a qu'une possibilité pour la première application)
 - ii. f est surjective si et seulement si $\mathbb{E} \xrightarrow{f} \mathbb{F} \to \left\{ \overrightarrow{0} \right\}$ est exacte (remarque similaire).
- (b) On suppose que $\left\{\overrightarrow{0}\right\} \to \mathbb{E}_1 \xrightarrow{f_1} \mathbb{E}_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} \mathbb{E}_{n-1} \xrightarrow{f_{n-1}} \mathbb{E}_n \to \left\{\overrightarrow{0}\right\}$ est exacte, et les espaces \mathbb{E}_k de dimension finie. Montrer:

$$\sum_{k=1}^{n} (-1)^k \dim \mathbb{E}_k = 0$$

(c) F et G sont deux sous-espaces de E. Soit

$$\varphi: \left| \begin{array}{c} \mathbb{F} \cap \mathbb{G} \to \mathbb{F} \times \mathbb{G} \\ \overrightarrow{x} \mapsto \left(\overrightarrow{x}, \overrightarrow{x}\right) \end{array} \right| \text{ et } \psi: \left| \begin{array}{c} \mathbb{F} \times \mathbb{G} \to \mathbb{F} + \mathbb{G} \\ (x, y) \mapsto x - y \end{array} \right|$$

montrer que la suite $\left\{\overrightarrow{0}\right\} \to \mathbb{F} \cap \mathbb{G} \xrightarrow{\varphi} \mathbb{F} \times \mathbb{G} \xrightarrow{\psi} \mathbb{F} + \mathbb{G} \to \left\{\overrightarrow{0}\right\}$ est exacte.

- (d) En déduire la relation de Grassmann.
- 18. : Soient \mathbb{E} et \mathbb{F} deux \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$; E' est un sous-espace vectoriel de \mathbb{E} et E' un sous-espace vectoriel de \mathbb{F} . On demande de prouver les relations suivantes :

- (a) $\dim f(E') = \dim E' \dim (E' \cap \operatorname{Ker} f)$ (en particulier $\dim f(E') \leq \dim E'$.)
- (b) $\dim f^{-1}(F') = \dim (\operatorname{Ker} f) + \dim (F' \cap \operatorname{Im} f)$.
- (c) $\operatorname{codim}_{\mathbb{E}}(f^{-1}(F')) = \operatorname{codim}_{\mathbb{F}}(F') \operatorname{codim}_{\mathbb{F}}(F' + \operatorname{Im} f)$.
- 19. : Soit $f \in \mathcal{L}(\mathbb{E})$ bijective et F un sous-espace-vectoriel de \mathbb{E} stable par f, c'est à dire que $f(F) \subset F$.
 - (a) Montrer que si F est de dimension finie, alors f(F) = F.
 - (b) * Montrer que ceci est faux en dimension infinie : considérer f de $(\mathbb{K}[X])^2$ dans lui-même qui à (P,Q) associe $\left(XP,P(0)+\frac{Q-Q(0)}{X}\right)$, et $F=\mathbb{K}[X]\times\{0\}$.
- 20. : Rang d'une somme.

Soient $f, g \in \mathcal{L}(\mathbb{E}, \mathbb{F})$, \mathbb{E} étant de dimension finie. Montrer que :

$$|\operatorname{rg} f - \operatorname{rg} g| \leq \operatorname{rg} (f+g) \leq \operatorname{rg} f + \operatorname{rg} g$$

et donner un exemple pour chaque cas d'égalité.

21. : Rang d'une composée.

Soient $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ et $g \in \mathcal{L}(\mathbb{F}, \mathbb{G})$ (en dimension finie);

- (a) Montrer
 - i. $\dim (\operatorname{Im} (g \circ f)) \leq \dim (\operatorname{Im} f)$
 - ii. $\dim (\operatorname{Im} (g \circ f)) \leq \dim (\operatorname{Im} g)$
 - iii. $\dim (\ker (g \circ f)) \leq \dim (\ker f) + \dim (\ker g)$ (utiliser le théorème du rang pour la restriction h de f à $\ker (g \circ f)$)
- (b) En déduire les inégalités dites "de Sylvester" :

$$\operatorname{rg} f + \operatorname{rg} g - \dim \mathbb{F} \leqslant \operatorname{rg} (g \circ f) \leqslant \min (\operatorname{rg} f, \operatorname{rg} g)$$

Étudier les cas d'égalité.

i. * Montrer plus précisément en utilisant la restriction k de q à Im f que

$$rg(g \circ f) = rg(f) - \dim \ker g \cap \operatorname{Im} f$$

$$= rg(f) + rg(g) - \dim \mathbb{F} + (\dim \ker g - \dim \ker g \cap \operatorname{Im} f)$$

$$= rg(g) - \operatorname{codim}_{\mathbb{F}} (\ker g + \operatorname{Im} f)$$

- 22. : Composée bijective d'endomorphismes.
 - (a) Montrer que pour des endomorphismes en dimension finie, si $g \circ f$ est bijectif, alors f et g le sont. deux méthodes : soit utiliser la relation : $\operatorname{rg}(g \circ f) \leqslant \min(\operatorname{rg} f, \operatorname{rg} g)$, montrée à l'exercice précédent, soit montrer que f est injective et conclure.
 - (b) Soit $f: \left| \begin{array}{c} \mathbb{K}\left[X\right] \to \mathbb{K}\left[X\right] \\ P \mapsto XP \end{array} \right|$, trouver $g \in \mathcal{L}\left(\mathbb{K}\left[X\right]\right)$ tel que $g \circ f = \mathrm{id}_{\mathbb{K}\left[X\right]}$, et montrer que ni f, ni g ne sont bijectifs (le (a) est donc faux en dimension infinie).
- 23. * : Noyau et image d'une composée.

Soient $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ et $g \in \mathcal{L}(\mathbb{F}, \mathbb{G})$.

(a) Montrer que si F' est un sous-espace vectoriel de \mathbb{F} ,

$$f(f^{-1}(F')) = F' \cap \operatorname{Im} f$$

$$g^{-1}(g(F')) = F' + \operatorname{Ker} g$$

(b) En déduire que

$$\operatorname{Ker} g \cap \operatorname{Im} f = f(\operatorname{Ker} (g \circ f)) \text{ et } \operatorname{Ker} g + \operatorname{Im} f = g^{-1}(\operatorname{Im} (g \circ f))$$

$$\operatorname{Ker} (g \circ f) = f^{-1}(\operatorname{Ker} g \cap \operatorname{Im} f) \text{ et } \operatorname{Im} (g \circ f) = g(\operatorname{Ker} g + \operatorname{Im} f)$$

(c) En déduire que

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \Leftrightarrow \operatorname{Ker} g \cap \operatorname{Im} f = \{\overrightarrow{0}\}\$$

$$\operatorname{Im}(g \circ f) = \operatorname{Im} g \Leftrightarrow \mathbb{F} = \operatorname{Ker} g + \operatorname{Im} f$$

(d) En déduire que

 $g\circ f$ est bijective $\Leftrightarrow f$ est injective, g est surjective et $\mathbb{F}=\operatorname{Ker} g\oplus\operatorname{Im} f$

(e) En déduire aussi qu'en dimension finie :

$$rg(g \circ f) = rg(f) \Leftrightarrow \operatorname{Ker} g \cap \operatorname{Im} f = \{\overrightarrow{0}\}$$

$$rg(g \circ f) = rg(g) \Leftrightarrow \mathbb{F} = \operatorname{Ker} g + \operatorname{Im} f$$

$$\mathbb{F} = \operatorname{Ker} g \oplus \operatorname{Im} f \Leftrightarrow ??$$

24. : Soit $f \in \mathcal{L}(\mathbb{E})$; pour tout $k \in \mathbb{N}$, on note $N_k = \operatorname{Ker}(f^k)$ et $I_k = \operatorname{Im}(f^k)$; Montrer que :

- (a) $N_k \subset N_{k+1}$ et $I_{k+1} \subset I_k$
- (b) * Si $N_k = N_{k+1}$ alors $\forall q \geqslant k$ $N_q = N_k$ et $N_k \cap I_k = \{\overrightarrow{0}\}$.
- (c) * Si $I_k = I_{k+1}$ alors $\forall q \geqslant k$ $I_q = I_k$ et $\mathbb{E} = N_k + I_k$.
- (d) * Donner un exemple où $N_k \subsetneq N_{k+1}$ pour tout k.
- (e) * Si dim $\mathbb{E} < \infty$, soient $k_1 = \min\{k \in \mathbb{N} / N_k = N_{k+1}\}$ et $k_2 = \min\{k \in \mathbb{N} / I_k = I_{k+1}\}$; montrer k_1 et k_2 sont finis et égaux (à k) et que $\mathbb{E} = N_k \oplus I_k$.

25. : Soient \mathbb{E} un espace vectoriel sur \mathbb{K} , et $f \in \mathcal{L}(\mathbb{E})$;

(a) On considère les propriétés suivantes :

$$\begin{array}{lll} (\mathbf{A}) & : & \mathbb{E} = \operatorname{Ker} f + \operatorname{Im} f & (\mathbf{B}) \operatorname{Im} f^2 = \operatorname{Im} f \\ (\mathbf{A}') & : & \operatorname{Ker} f \cap \operatorname{Im} f = \left\{ \overrightarrow{0} \right\} & (\mathbf{B}') \operatorname{Ker} f^2 = \operatorname{Ker} f \\ \end{array}$$

Prouver que $(\mathbf{A}) \Leftrightarrow (\mathbf{B})$ et $(\mathbf{A}') \Leftrightarrow (\mathbf{B}')$ (cf. exercice 23).

(b) Soit
$$f: \left| \begin{array}{c} \mathbb{K}[X] \to \mathbb{K}[X] \\ P \mapsto XP \end{array} \right| \text{ et } g: \left| \begin{array}{c} \mathbb{K}[X] \to \mathbb{K}[X] \\ P \mapsto \frac{P - P(0)}{X} \end{array} \right|.$$

- i. Montrer que f vérifie (\mathbf{A}') , mais ne vérifie pas (\mathbf{A})
- ii. Montrer que g vérifie (A), mais ne vérifie pas (A')
- (c) On suppose dim $\mathbb{E} < \infty$. Montrer que : $(\mathbf{B}) \Rightarrow (\mathbf{B}')$ et $(\mathbf{A}') \Rightarrow (\mathbf{A})$. Conclusion ? En déduire que :

$$\mathbb{E} = \operatorname{Ker} f \oplus \operatorname{Im} f \Leftrightarrow \operatorname{rg} f = \operatorname{rg} f^2$$

(d) Donner un exemple d'un tel endomorphisme f, autre qu'un projecteur ou qu'une bijection. Donner un exemple d'un endomorphisme f ne vérifiant pas cette propriété.

26. : Soient \mathbb{E} un espace vectoriel sur \mathbb{K} , $f \in \mathcal{L}(\mathbb{E})$, et $f_0 \in \mathcal{L}(\operatorname{Im} f)$ la restriction de f à $\operatorname{Im} f$; montrer que

$$\mathbb{E} = \operatorname{Ker} f + \operatorname{Im} f \Leftrightarrow f_0 \text{ est surjective}$$

$$\operatorname{Ker} f \cap \operatorname{Im} f = \left\{ \overrightarrow{0} \right\} \Leftrightarrow f_0 \text{ est injective}$$

$$\mathbb{E} = \operatorname{Ker} f \oplus \operatorname{Im} f \Leftrightarrow ?$$

27. : Soient \mathbb{E} , \mathbb{F} deux espaces vectoriels sur \mathbb{K} , $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$, $g \in \mathcal{L}(\mathbb{F}, \mathbb{E})$.

Soit f_1 la restriction de f à Im g pour le départ et Im f pour l'arrivée, et soit g_1 la restriction de g à Im f pour le départ et Im g pour l'arrivée.

(a) Montrer que si $f \circ g \circ f = f$ alors $\operatorname{Im} f \cap \ker g = \{\overrightarrow{0}\}\ \text{et } E = \operatorname{Im} g + \ker f.$

(b) Montrer que
$$\left\{ \begin{array}{l} f \circ g \circ f = f \\ g \circ f \circ g = g \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} E = \operatorname{Im} g \oplus \ker f, F = \operatorname{Im} f \oplus \ker g \\ f_1 \text{ bijective de réciproque } g_1 \end{array} \right.$$

28. *:

- (a) Donner un exemple d'endomorphisme de \mathbb{K}^2 dont l'image égale le noyau.
- (b) Soit \mathbb{E} un espace vectoriel de dimension n sur \mathbb{K} , et $f \in \mathcal{L}(\mathbb{E})$. Montrer que : $\ker f = \operatorname{Im} f \Leftrightarrow \begin{cases} f \circ f = 0 \\ n \text{ est pair } \\ \operatorname{rg} f = \frac{n}{2} \end{cases}$
- (c) Si n=2p, soit $(\overrightarrow{e}_1,\overrightarrow{e}_2,...,\overrightarrow{e}_p)$ une base de Ker $f=\operatorname{Im} f$; il existe donc p vecteurs \overrightarrow{e}_i' tels que $\overrightarrow{e}_i=f(\overrightarrow{e}_i')$; montrer que $\mathcal{B}=\left(\overrightarrow{e}_1,\overrightarrow{e}_2,...,\overrightarrow{e}_p,\overrightarrow{e}_1',\overrightarrow{e}_2',...,\overrightarrow{e}_p'\right)$ est une base de \mathbb{E} et écrire la matrice de f dans cette base.
- 29. : Soit \mathbb{E} un espace vectoriel sur \mathbb{K} , et $f, g \in \mathcal{L}(\mathbb{E})$ tels que f et g commutent, i.e. $f \circ g = g \circ f$. On dit qu'un sous-espace vectoriel F de \mathbb{E} est stable par f si $f(F) \subset F$.
 - (a) Montrer que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont stables par g.
 - (b) Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$, Montrer que $P(f) \begin{pmatrix} def \\ = \sum_{k=0}^{n} a_k f^k$, sans oublier que $f^0 = id_E \end{pmatrix}$ et g commutent. Qu'en déduit-on pour $\operatorname{Ker}(P(f))$ et $\operatorname{Im}(P(f))$?

30. *:

- (a) Soit $\mathbb{E} = \mathbb{K}^{\mathbb{K}^*}$ et $\mathbb{P} = \{ f \in \mathbb{E} \mid f \text{ est paire} \}$, $\mathbb{I} = \{ f \in \mathbb{E} \mid f \text{ est impaire} \}$; montrer que $\mathbb{E} = \mathbb{P} \oplus \mathbb{I}$ et que \mathbb{P} et \mathbb{I} sont isomorphes.
- (b) Soit $\mathbb{E} = C^{\infty}(\mathbb{R}, \mathbb{R})$, \mathbb{P} le sous-espace constitué des fonctions paires, \mathbb{I} celui constitué des fonctions impaires.
 - i. Vérifier que $\mathbb{E} = \mathbb{P} \oplus \mathbb{I}$. On définit une application φ de \mathbb{E} dans \mathbb{E} par $\varphi(f)(x) = \int_{-x}^{x} f(t)dt$ pour tout $f \in \mathbb{E}$ et tout $x \in \mathbb{R}$.
 - ii. Vérifier la linéarité de φ ; déterminer $\ker \varphi$ et $\operatorname{Im} \varphi$; en déduire φ^2 .
 - iii. En déduire que \mathbb{P} et \mathbb{I} sont isomorphes.
- 31. * : Soit \mathbb{E} un espace vectoriel sur \mathbb{K} non réduit à $\{\overrightarrow{0}\}$ et $f \in \mathcal{L}(\mathbb{E})$. Dire si chacune des assertions suivantes est vraie ou fausse.
 - (a) $f^2 = id_{\mathbb{E}} \Rightarrow f = \pm id_{\mathbb{E}}$.
 - (b) $f^2 = \mathrm{id}_{\mathbb{E}} \Rightarrow \exists \overrightarrow{x} \neq \overrightarrow{0} \in \mathbb{E} \quad / \quad f(\overrightarrow{x}) = \pm \overrightarrow{x}$
 - (c) si $\Delta = b^2 4ac \ge 0, a \ne 0$

$$af^2 + bf + c \operatorname{id}_{\mathbb{E}} = 0 \Rightarrow (2af + b \operatorname{id}_{\mathbb{E}})^2 = \Delta \operatorname{id}_{\mathbb{E}} \Rightarrow f = \left(\frac{-b \pm \sqrt{\Delta}}{2a}\right) \operatorname{id}_{\mathbb{E}}$$

(deux assertions)

(d) On suppose dim $\mathbb{E} = 2$. Si $\exists \overrightarrow{x} \in \mathbb{E}$ tel que $(\overrightarrow{x}, f(\overrightarrow{x}))$ est libre et $f^2(\overrightarrow{x}) = 0$, alors $f^2 = 0$.

32. *:

- (a) Lemme : montrer que si \mathbb{E} et \mathbb{F} sont non réduits à $\{\overrightarrow{0}\}$, $\mathcal{L}(\mathbb{E},\mathbb{F})$ n'est pas réduit à $\{\overrightarrow{x}\mapsto\overrightarrow{0}\}$ (on admet que tout sous-espace possède un supplémentaire). Soit $f\in\mathcal{L}(\mathbb{E})$; montrer que
- (b) f est simplifiable à gauche $\Leftrightarrow f$ est inversible à gauche dans $\mathcal{L}(\mathbb{E}) \Leftrightarrow f$ est injectif.
- (c) f est simplifiable à droite $\Leftrightarrow f$ est inversible à droite dans $\mathcal{L}(\mathbb{E}) \Leftrightarrow f$ est surjectif. Donc $f \in GL(\mathbb{E}) \Leftrightarrow f$ est simplifiable (ou régulière).

- 33. * : Soient $x_1, ..., x_n$ n'éléments distincts de \mathbb{K} .

 Montrer que l'ensemble des n-uplets $(P(x_1), ..., P(x_n))$ pour P décrivant $\mathbb{K}[X]$ est égal à \mathbb{K}^n tout entier.
- 34. * : Soit φ une forme linéaire sur $\mathbb{E} = \mathbb{K}^I$ telle que $\varphi(x \mapsto 1)$ ne soit pas nulle. Montrer que l'ensemble G des applications constantes de I dans \mathbb{K} est un supplémentaire de $F = \ker \varphi$ dans \mathbb{E} .

35. :

- (a) Déterminer la matrice canonique de l'endomorphisme de \mathbb{K}^3 transformant le plan P: x+y=0 en le plan P': x+y-z=0, le plan Q: y+z=0 en le plan Q': -x+y+z=0, et le plan R: x+z=0 en le plan R': x-y+z=0.
- (b) * Montrer que plus généralement, il existe en dimension n un unique endomorphisme transformant n hyperplans donnés, noyaux de n formes linéaires formant une famille libre, en n hyperplans donnés.
- 36. * : Soit f une application linéaire non nulle de $\mathbb E$ dans $\mathbb K$.
 - (a) Montrer qu'il existe un $\overrightarrow{e} \in \mathbb{E}$ tel que $f(\overrightarrow{e}) = 1$.
 - (b) Pour \overrightarrow{x} et \overrightarrow{y} de \mathbb{E} , on pose $\overrightarrow{x}*\overrightarrow{y}=f(\overrightarrow{x})\overrightarrow{y}+f(\overrightarrow{y})\overrightarrow{x}-f(\overrightarrow{x})f(\overrightarrow{y})\overrightarrow{e}$; montrer que $(\mathbb{E},+,*)$ est un anneau commutatif.
 - (c) Résoudre dans $\mathbb{E}^2 : \overrightarrow{x} * \overrightarrow{y} = \overrightarrow{0}$.
- 37. * : Base duale.
 - (a) Soit \mathbb{E} un \mathbb{K} -espace vectoriel de base $(e_1, e_2, ..., e_n)$; pour $1 \leq i \leq n$, on définit $f_i \in \mathcal{L}(E, \mathbb{K})$ par $f_i(e_j) = \delta_{ij}$; montrer que $(f_1, f_2, ..., f_n)$ est une base de $\mathcal{L}(\mathbb{E}, \mathbb{K})$ (appelée base duale de $(e_1, e_2, ..., e_n)$).
 - (b) On prend ici $\mathbb{E} = \mathbb{K}_{n-1}[X]$; soient $x_1, x_2, ..., x_n$ n éléments distincts de \mathbb{K} et $f_i \in \mathcal{L}(E, \mathbb{K})$ définie par $f_i(P) = P(x_i)$. Montrer que $(f_1, f_2, ..., f_n)$ est une base de $\mathcal{L}(\mathbb{E}, \mathbb{K})$ et déterminer une base $(P_1, P_2, ..., P_n)$ de \mathbb{E} dont $(f_1, f_2, ..., f_n)$ soit la base duale.