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Abstract

One of the more recent developments in operational spaceborne remote sensing is the availability of radar. This sensor
has the ability to penetrate through clouds making it a more easily available data set for some locations. In addition, radar
interacts very differently with surface features than optical data providing information more related to shape and structure than
composition. A disadvantage of currently available spaceborne radar is that the data are almost entirely single wavelength
and single polarization limiting the ability to do traditional digital classification. This study examined the usefulness of
radar-derived texture measures for feature identification. Texture measures were compared independently and in combination
with the original radar for digital land cover delineation. The primary methodology was standard image processing spectral
signature extraction and the application of a statistical decision rule to classify the surface features for several sites in East Africa
and one in Nepal. Relative accuracy of the resultant classifications was established by digital integration and comparison to
validation information derived from field visitations. Variance texture measures were found to be generally very advantageous
over original radar values but quite variable in their delineation accuracies from one cover type to another.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In a world with increasing population and the mis-
use of limited land resources, there is a greater demand
for current, accurate spatial information. This issue of
reliable information has taken on global dimensions as
the world community has recognized the need to as-
sess problems and tasks such as environmental studies,
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economic planning and resource management in many
diverse and separate geographical regions. Basic infor-
mation concerning land use/cover is, therefore, critical
to both scientific analysis and decision-making activ-
ities. Without this information scientists cannot com-
plete valid studies and decision makers will often fail
to make the correct choices (Haack and English, 1996).

One significant method for providing current, re-
liable land surface information is spaceborne remote
sensing. Traditionally, this has taken the form of
multispectral systems, such as the Landsat Thematic
Mapper (TM), which collect data at several discrete
bandwidths within the visible and infrared regions of
the electromagnetic spectrum (EMS). These systems
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have the advantage of being a mature technology, with
a broad knowledge base achieved through several
decades of experimentation and use (Gerstl, 1990).
More recently Earth observation research has grown
with the launch of several satellite systems capable of
operationally collecting radar data. These all weather
sensors hold significant data-collecting potential for
many geographic areas around the world, especially
those often obscured by adverse weather conditions.

A radar system is an active sensor, illuminating a
ground target area with its own energy signal. Radar
surface feature interaction, or scattering, and the char-
acteristics of this scattered energy, or backscatter, are
dependent upon the geometric and electrical factors
of the ground target area. Such factors include target
material, orientation, moisture content and the degree
of surface roughness. Radar image backscatter is often
a direct result of the ground surface texture (Dobson
et al., 1995, 1997).

A difficulty with the analysis of radar as an inde-
pendent sensor is that current radar spaceborne sys-
tems only collect data at a single wavelength with a
fixed polarization. Only one component of the total
surface scattering is thereby being measured, while
any additional information contained within the re-
flected radar signal is lost (Zebker and Van Zyl, 1991).
Future systems will include an increased number of
wavelengths and polarizations, but until then the goal
of increased informational content may possibly be
reached through simpler methods, such as the extrac-
tion of textural measures. Textural information may
be used in addition to the spectral measurements of a
single wavelength for analysis (Mauer, 1974).

Textural information may be as important as spec-
tral information in radar images as the content of an
image resides in both the intensity (spectral) of in-
dividual pixels and the spatial arrangement of those
pixels (Anys and He, 1995). Standard image classi-
fication procedures, used to extract information from
remotely sensed images, usually ignore this spatial in-
formation and are based on purely spectral character-
istics. Such classifiers will be ineffective when applied
to land use/cover classes such as residential and ur-
ban areas that are largely distinguished by their spa-
tial, rather than their spectral, characteristics (Lee and
Philpot, 1991).

The purpose of this study was to examine and
improve upon the classification accuracy of specific

land use/cover categories by radar-derived measures
of texture in comparison to and in combination with
the original radar for several study sites in East Africa
and one in Nepal. By increasing the information con-
tent by specific radar manipulations, the accuracy
of land use/cover classification may be improved,
providing a more useful source of spatial informa-
tion to scientists and planners. A cautionary note is
that radar texture measures, the focus of this study,
may vary with depression and incidence angle, look
direction and acquisition date. It was not the intent
of this study to evaluate these additional parame-
ters but a more basic, initial evaluation of image
texture.

2. Study sites and data

Several different study sites were included repre-
senting different surface conditions. These include
two sites in East Africa and one in Nepal. These mul-
tiple sites allow for comparison of results in varied
landscapes.

2.1. Kericho, Kenya

The Kericho site is a complex geographic region,
about 80 km to the east of Lake Victoria and the port
city of Kisumu, in western Kenya. The site covers
an area approximately 20 km× 20 km that has an
average elevation of 1500 m and a highly variable to-
pography. Various spaceborne dates of RADARSAT
were acquired for this area but with little appar-
ent differences between them. The scene from 27
February 1997 (Fig. 1) was used for this study.
RADARSAT is C-band, 5.6 cm data, with a single
horizontal–horizontal (HH) polarization. It can col-
lect data in various incident angles, spatial resolutions
and swath widths. The RADARSAT data acquired for
this study were with an approximate 50◦ depression
angle and a spatial resolution of about 25 m× 28 m.
The primary cover types investigated as part of this
study include small, intense agricultural areas which
are fallow during this date, tea plantations, natural
forest and settlements.

The small, family owned and operated farms of
mixed crops cover much of the northwest portion of
Fig. 1. This is very productive agriculture with small
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Fig. 1. RADARSAT scene of Kericho, Kenya (27 February 1997). Scene width is approximately 20 km. Visually the backscatter variations
via cover type are not clearly delineated. The closed canopy forest in the southeast has a higher overall backscatter. The small, primarily
fallow, agricultural fields in the northwest have a lower response. The city of Kericho in the center, while small, has some very high
backscatter features. Copyright RADARSAT International.

field sizes and complex cropping patterns. Most crops
grown are for family consumption and include corn,
various legumes, mixed vegetables, bananas, papaya
and small plots of tea or coffee. These areas include
some isolated large trees and structures. These inclu-
sions further add to the complexity of this already di-
verse agricultural area. Such complexity in crop type,
field size and structures make it nearly impossible to
map individual crops in this region. The radar image
was acquired during the dry season when most fields
lay fallow. The fallow fields are expected to provide

little radar backscatter as they will act specularly to
the incoming radar.

Large-scale tea plantations are located in the more
elevated areas of the region, transectingFig. 1 from
northeast to southwest. These fields are quite exten-
sive and provide a healthy green vegetation response
throughout the year, as tea does not have an annual
dormant season. A small portion of these fields are
cut back to a minimum stem and primary branches
each year to promote better growth. During this pe-
riod and for several months following, there is no
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Fig. 2. Ground photograph of the high-density settlements within the tea plantations near Kericho, Kenya.

green vegetation in these fields and they are spec-
trally similar to bare soil in optical sensors such as
Landsat. At the highest elevations in the southeast, an
area of greater topography, is a third cover type of
natural, broadleaf evergreen forests. These forests are
quite mature providing a high radar backscatter (light
tones).

Limited areas of settlement constitute the final cover
type located within this study site. Most housing in
this region is associated with the small farms, and
scattered throughout the mixed agricultural landscape.
Though these interspersed houses make up a major-
ity of the dwellings, they are too small and isolated
to be mapped. Kericho City is located near the cen-
ter of Fig. 1, between the small-scale agriculture to
the northwest and tea plantations transecting the mid-
dle of the scene. The housing for the employees of
the large-scale tea estates is quite concentrated, inter-
spersed among the tea plantations.Fig. 2 is a view of
one of the plantation employee settlement units. Both
the city of Kericho and the plantation employee hous-
ing provide high backscatter.

The RADARSAT scene shows remarkably little dif-
ference in backscatter between the primary surface
features. The natural forest has a higher tone, backscat-
ter, as do the settlements but in general, there is lit-
tle clear tonal separability in the primary land covers.
Calibration (training) and validation (truth) informa-
tion obtained during field visitation were converted to
a raster-based geographic information system (GIS)
layer and spatially fused to the imagery for signature
extraction and comparison to the classification results.

2.2. Wad Medani, Sudan

The Wad Medani study site is situated along the
Blue Nile River in central Sudan. It includes the sec-
ond largest city in Sudan, which is 160 km southeast of
Khartoum. Wad Medani has a population near 100,000
and is an extremely successful agricultural production
area for cotton and sugar cane.

This region of Sudan is extremely flat and dry, and,
with the exception of irrigated agricultural fields, con-
tains very little vegetation. The natural vegetation is
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Fig. 3. SIR-B scene for Wad Medani, Sudan, collected in November 1984. Scene width is approximately 10 km. The river can be seen as
a meandering low backscatter feature across the frame. Along the river and to the east and south are high backscatters from the urban and
vegetative features. The low backscatter to the northwest is flat, bare soil acting as a specular feature.

mostly riparian. Areas of both agriculture and vegeta-
tion can be seen inFig. 3 as high backscatter regions.
Due to the limited extent of the natural vegetation
and its similarity of response to the crops within this
scene, both of these features were included under the
general cover classification of agricultural.Fig. 4 is a
ground photograph at the edge of the agricultural ar-
eas. In this photograph, fast-growing eucalyptus trees
are under irrigation.

Other cover types include: water of the Blue Nile
River, which transects the scene from the northeast to
the southwest; urban areas, including villages and the
city of Wad Medani; and areas of dry, bare soil, seen

as the dark, low backscatter tones, in the northwestern
portion of the image. Wad Medani is located in the
southeastern portion of the scene below the Blue Nile.
It is not clearly identifiable because it has similarly
high backscatter to the vegetation.

Radar data from the Shuttle Imaging Radar mission
B (SIR-B) were used in this analysis. The SIR-B mis-
sion was flown in October 1984 and collected L-band
(23.5 cm) horizontal–horizontal polarization synthetic
aperture data. The digitally correlated data were ob-
tained at a 12.5 m spatial resolution and fused with
raster-based calibration and validation information
from field visits.
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Fig. 4. Ground photograph of an irrigated agricultural area near Wad Medani, Sudan.

2.3. Kathmandu, Nepal

The Kathmandu Valley is in the central region of
Nepal and encompasses an area of approximately
30 km× 35 km. The valley has very rapid urbaniza-
tion resulting in the loss of valuable agricultural lands
and also increasing environmental and infrastructure
problems. The generally flat floor of the valley is at
an average elevation of 1300 m and the sides of the
valley are very steeply sloping to elevations of over
2000 m. The floor of the valley consists of two pri-
mary landforms, broad river floodplains and elevated
ancient lake and river terraces, locally called tars. Ma-
jor crops include rice, wheat, maize, potatoes, mustard
and a number of other seeds used for oil production.
A large variety of vegetables are grown throughout
the year, providing fresh produce to the local popu-
lation. The flat floodplains are multi-cropped, often
with rice grown during the wet season followed by
wheat, oil seeds or vegetables. These areas are usu-
ally irrigated and out of production only long enough
for the ground to be readied for the next crop. The
upland tars are typically maize during the wet season

and fallow during the dry.Fig. 5 is a ground photo of
the outer regions of the valley.

For this study, four land uses/covers were exam-
ined. These include the dense, older urban core; the
more recent expansions of the urban areas on the
margins, suburban or new urban; agriculture which
is primarily fallow at the time of year of the im-
agery examined; and a few areas of open grass. For
the purposes of urban growth mapping, it may not
be necessary to separate the old urban and new ur-
ban. The grass and agriculture are also not signifi-
cantly different from a land use/cover perspective for
urban delineations. In examining the results from this
study, the new and old urban could be combined to
urban and the grass and agriculture to a non-urban
class.

The old and new urban areas differ significantly,
particularly from a remote sensing perspective, and
thus it was necessary to separate them initially. The
old urban areas are very compact with smaller but
taller buildings with sloping roofs. The newer urban
buildings are less dense and have flat concrete or
metal roofs.
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Fig. 5. Typical Kathmandu Valley view of agricultural fields on the flat valley floor and terraced slopes during the dry season.

Structures act as corner reflectors to radar and will
provide high backscatter values particularly relative
to the almost specular nature of fallow fields or grass
surfaces. The denser, old urban areas will have higher
radar backscatter than the less dense new urban loca-
tions. The new urban are mixed areas of interspersed
crop fields and structures. These areas should have a
high radar texture. The old urban should have a lower
radar texture because of the more compact land use but
there will still be some open areas with low backscat-
ter and thus higher texture than the agriculture and
grasses that should have very low radar backscatter
and texture.

RADARSAT was acquired for this study (Fig. 6).
In this scene, the vast majority of high backscatter,
light tones, are the urban features on the valley floor.
There are also areas of high return from the greater
topography along the valley edges. There are virtually
no remaining forest areas within the valley that would
be expected to provide high backscatter and would
likely be confused with the urban features. That lack

of forest also limits the classification scheme. Simi-
larly, there are insufficient areas of water for a separate
classification although the river patterns are evident in
the scene. The primarily fallow agriculture and grass
features are both low in backscatter on this image and
not easily separable.

3. Methodology

The basic procedure for this study was to conduct
a digital classification of selected surface classes us-
ing standard processing techniques. Spectral signa-
tures were extracted for the various cover types using
supervised training sites identified through fieldwork.
After signature extraction, a maximum likelihood de-
cision rule was employed to classify the data sets. Ac-
curacy assessment was calculated from a comparison
of the classifications obtained to a set of validation
sites, separated from the calibration areas, also derived
from field efforts. An issue with window-based mea-
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Fig. 6. RADARSAT scene of Kathmandu, Nepal (19 November 1998). Approximate image width is 10 km. The urban features are high
backscatter. The dark, linear feature to the east is the airport. Some river patterns meander across the frame and some topographic shadow
is apparent in the northwest. Copyright RADARSAT International.

sures, such as texture, is the boundary or edge feature
delineations. Since this study was a relative compari-
son of classification accuracies between data and pro-
cessing strategies, those boundary issues are not con-
sidered but an applied implementation of these proce-
dures may require additional evaluations.

The results from this study consist of comparisons
between the accuracy assessments from various clas-
sifications for the individual cover types, and for all of
the cover types combined in an overall classification
accuracy for each site. A number of data comparisons
were examined. These included the original radar data
independently, textural manipulations of the radar
data and combinations of original radar and texture
measures.

Texture is often one of the factors used to delin-
eate or identify features by visual interpretation of
remotely sensed images or photographs. Increasingly
digital measures of texture are incorporated in auto-
mated classifications. Digital texture is the spatial vari-
ation of pixel values (Haralick, 1973; Nuesch, 1982).
Many attempts have been made to define, characterize
and construct quantitative texture measures in remote
sensing with both optical or radar data (Durand et al.,
1987; Irons and Peterson, 1981; Prasad and Gupta,
1988; Schistad and Jain, 1992).

Previous studies with similar radar data and land-
scapes evaluated texture measures to ascertain their
relative value in mapping land cover in Tanzania
(Haack and Bechdol, 2000). Three texture algorithms
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were examined: mean Euclidean distance, variance
and kurtosis. In that study, the variance (second order)
extraction method achieved 5–15% higher overall
classification accuracies than the other texture mea-
sures. Based on those results, the variance measure of
texture was examined in this study.

Most texture measures utilize a moving array of
cells with a variety of mathematical measures to de-
rive texture values for the center cell of the moving
array. It is unclear how the size of the moving window
influences classification accuracies.Haralick (1973)
used windows of 64×64 and achieved Level 1 USGS
classification levels.Mauer (1974)conducted texture
measures with 50×50 windows on 1:7800 scale aerial
photographs and recorded promising results. Different
window sizes can have a positive or negative effect
depending on the intended application.Hsu (1978)
stated that even relatively small moving arrays (5×5)
can cause extensive misclassification at the boundaries
between classes. However,Blom (1982) found that
window sizes of 15×15, 31×31 and 61×61 provided
constructive results for larger-scale applications. The
influence of various window sizes is a function of surf-
ace characteristics, sensor type and spatial resolutions.

Texture measures were examined byHaack and
Bechdol (2000)with varied window sizes using the
variance (second order) measure of texture. Although
an increase in overall classification accuracy was
steady as window sizes became larger, the increase
was very slight and the point of diminishing returns
for overall classification accuracies due to window
size was at the 13× 13 window size. This study also
evaluated several different window sizes. Texture will
vary as a function of a variety of factors but partic-
ularly sensor spatial resolution and surface feature
sizes. By evaluating a range of window sizes, the im-
pact of texture window size may be better evaluated.
For the Kathmandu site, there are many smaller fea-
tures, structures, and thus smaller window sizes were
evaluated.

4. Results

4.1. Kericho

Evaluation of the Kericho study site was accom-
plished by comparing classifications to validation in-

formation. For Kericho there were 16,780 validation
pixels, which included four forest sites (8848 pixels),
five tea plantation sites (2761 pixels), one urban site
(114 pixels) and four sites of mixed agriculture (5057
pixels). The low number of urban pixels was due to
the lack of large urban areas within the scene. The city
of Kericho was the only urban area available for the
purposes of accuracy assessment. The differences in
the size and number of the validation information was
of particular importance, as larger classes, such as the
forest class, would contribute more substantially to an
overall classification percentage, while a small class,
such as urban, will have little influence. This could
result in misleading overall classification accuracies.
For this reason, individual class accuracies were eval-
uated in addition to the overall percentage of correctly
identified pixels.

4.1.1. Original radar
Initial examination of the RADARSAT image for

Kericho provided poor classification results. As can
be seen inTable 1, the overall classification, as well
as most of the individual class accuracies, were quite
low. The more unique, higher backscatter areas of the
urban/settlement class had the best producer’s classi-
fication accuracy at approximately 67%, but provided
a very low user’s accuracy.

A larger number of pixels from each of the forest,
tea and mixed agricultural classes were incorrectly in-
cluded as part of the urban category (1948 out of 2024
pixels) than were correctly classified as urban pixels.
Though this misclassification did not affect the pro-
portion of correctly identified urban pixels (76 out of
114 pixels), it did decrease the reliability of the ur-
ban class. The reliability was decreased because as the
total number of pixels classified as urban features in-
creased, the correctly identified urban pixels occupied
an increasingly lower proportion of that total (76 out
of 2024 pixels). This resulted in a much larger urban
area than should have been present within the classi-
fication. The accuracy of the other classes decreased
as well, as a number of pixels that should have been
included within each of these classes were removed
and instead classified as urban.

This was a particular problem within the forest
class, which had the largest number of pixels in-
correctly assigned as urban, though the incorrect
classification of forest areas was not limited to this
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Table 1
Contingency table for Kericho RADARSAT

Forest Tea Urban Mixed agriculture Total User’s accuracy (%)

Forest 2750 541 19 525 3835 71.71
Tea 2696 1094 10 1530 5330 20.53
Urban 1756 108 76 84 2024 37.55
Mixed agriculture 1646 1018 9 2918 5591 52.19
Total 8848 2761 114 5057 16780

Producer’s accuracy (%) 31.08 39.62 66.67 57.70

Overall accuracy (%) 40.75

urban misclassification. The urban class occupied
20% (1756) of the forest truth pixels, but nearly 30%
of the forest class was misidentified as tea plantations
(2696) and 19% (1646) as mixed agriculture. These
errors of omission decreased the producer’s accuracy
of the forest class and increased the total number of
pixels assigned to the other classes, which in turn
decreased their user’s accuracy or reliability.

Errors of omission and commission are directly re-
lated and overlap in effect. An individual class may
possess one or the other, or it may possess both types
of errors. The urban class had a fairly high producer’s,
or classification, accuracy with a very low user’s accu-
racy, while the forest class had a fairly high user’s, but
a low producer’s accuracy. The tea and mixed agricul-
tural classes added to the errors associated with both
the urban and the forest classes, but also had a more
general confusion between themselves. Both the user’s
and producer’s accuracies for these classes were low,
as they had nearly the same number of pixels confused
with the other classes as they have correctly classified.

These results are consistent with examination of
the RADARSAT imagery (Fig. 1). The RADARSAT
spectral signatures for the forest, tea and mixed agri-
culture covers do not greatly differ, returning visually
and spectrally similar responses. They have average
digital number (DN) values of 139, 113 and 103 (re-
spectively) and all possess high standard deviations.
This creates areas of overlap in their spectral signa-
tures, which creates confusion, and limits their spec-
tral separability. The urban class has a much higher
average DN value at 206, which improves its spectral
discrimination, but also has a much higher standard
deviation. This high standard deviation indicates that
both high and low DN values may be included in the
urban class, which accounts for the overclassification

of urban as many pixel values fall within this signature
range.

4.1.2. Texture
The high standard deviation associated with the

RADARSAT’s urban class suggested that measures
of image texture could possibly increase the discrim-
inatory ability of radar. Measures of variance texture
were applied to the original RADARSAT data over
13× 13, 21× 21 and 29× 29 moving window sizes.
The results indicate that texture does improve dis-
crimination. Overall classification accuracies of 67, 72
and 71% (respectively) were achieved, improving over
those of the original radar data by about 30%.

Results achieved with use of the 21× 21 texture
window size were best. The effectiveness of this tex-
ture window size is closely related to the spacing and
size of the ground features being observed.Table 2
contains the contingency matrix for these results. This
texture-based classification greatly increased the over-
all accuracy and especially increased the accuracy and
reliability of the forest and urban classes. The urban
features were discriminated perfectly by the 21× 21
texture image, eliminating all of the confusion and
errors previously seen with that class. The confusion
associated with the forest class (both errors of omis-
sion and commission) was also all eliminated, but with
only minor confusion between it and the mixed agri-
culture and tea classes. The only remaining area of
major confusion was isolated between the mixed agri-
cultural class and the tea plantations. These two land
covers seemed to be very similar in terms of radar
backscatter value and spatial variability or texture.

The impressive improvements obtained with the use
of texture can be explained through examination of the
21× 21 variance texture image’s spectral signatures,
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Table 2
Contingency table for Kericho 21× 21 variance texture RADARSAT

Forest Tea Urban Mixed agriculture Total User’s accuracy (%)

Forest 8672 410 0 99 9181 94.46
Tea 0 1205 0 2949 4154 29.01
Urban 0 0 114 0 114 100
Mixed agriculture 176 1146 0 2009 3331 60.31
Total 8848 2761 114 5057 16780

Producer’s accuracy (%) 98.01 43.64 100 39.73

Overall accuracy (%) 71.51

and the comparison of these signatures to those of the
original RADARSAT data. Both of these spectral sig-
natures are contained inTable 3. Signatures from the
21×21 variance texture image were much more unique
and separable than those of the original RADARSAT,
which had several similar values and large overlapping
responses. The most unique of the textural signatures
belonged to the urban class. It had the highest mean
value (60), indicating a high degree of texture and a
low standard deviation. This made the urban class eas-
ily separable from the other land covers. The forest
class was similar, in that it was also highly textured
(40) and substantially isolated from the other class sig-
natures, explaining its high degree of accuracy. These
signatures also explain the mutual misclassification of
the tea and mixed agricultural classes, as backscat-
ter and textural confusion between these two classes
created a large degree of spectral overlap, leaving the
statistical decision rule little information on which to
base its pixel assignment.

4.1.3. Radar fusion
Several combinations of the original radar data and

texture were examined to assess the utility associ-

Table 3
Spectral signatures for Kericho RADARSAT and 21×21 variance
texture RADARSAT

Forest Tea Urban Mixed
agriculture

RADARSAT
Mean 103 113 206 139
S.D. 31 32 60 43

21 × 21 variance texture
Mean 40 30 60 30
S.D. 2 1 2 3

ated with an increased number of radar bands. The
producer’s accuracies for the best of these can be seen
in Table 4 in comparison to the original radar and
texture. Results demonstrate that the addition of tex-
ture measures to the original radar data provided no
improvement over the classification accuracies of the
radar texture alone. This could have been expected,
as a high degree of confusion was associated with the
original RADARSAT data. As the original data were
of little use on their own, they provided little addi-
tional information content when merged with a texture
image.

4.2. Wad Medani

Evaluation of the Wad Medani, Sudan, study site
analysis was accomplished by comparing the classi-
fications to areas of known features obtained during
ground visitation. For Wad Medani, there were 9625
validation pixels. These pixels included four areas of
water (970 total pixels), three agricultural and natu-
ral vegetation sites (1621 pixels), three urban areas
(3435 pixels) and three areas of other ground cover
or bare soil (3599 pixels). The lower number of wa-
ter and agricultural pixels is primarily due to the dry
climate of this area and the resulting lack of moisture
for these features. The only body of water within the
study region was that of the Blue Nile River, which
meanders across a thin section of the scene. Agricul-
tural areas, too, were limited in this subscene as irriga-
tion is needed to sustain crops. The riparian vegetation
exists only at very close proximity to the Blue Nile.

4.2.1. Original radar
The SIR-B image of Wad Medani provided poor

overall classification results (∼51% accuracy). Con-
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Table 4
Producer’s accuracies for Kericho radar manipulations

Forest Tea Urban Agriculture Total

Radar 31 40 67 58 41
Variance texture 21× 21 98 44 100 40 72
Two-band radar and 21× 21 texture 97 50 100 41 72

fusion was caused by similarities in the radar spectral
responses between the urban and agricultural areas, as
well as between the water and other/bare soil classes.
These areas of confusion are clearly demonstrated in
Table 5which contains the distribution of pixels and
resulting classification accuracies for each of these in-
dividual classes.

The water class is most representative of the confu-
sion associated within the scene as it has both the poor-
est producer’s (∼33%) and user’s accuracies (∼20%),
indicating a high degree of both errors of omission and
commission. More water areas were incorrectly clas-
sified as other/bare than were classified as water (602
versus 326 pixels). These incorrect pixels accounted
for approximately 62% of the actual water areas. More
pixels were also identified as water (errors of commis-
sion), than were correctly identified as water (1398
pixels). The majority of these pixels should have been
assigned to the other/bare cover class (1200 pixels).

Conversely, the pixels incorrectly included as part
of the other/bare cover class should almost entirely
have been assigned as water pixels (2313 pixels), and
though this class has the highest producer’s (∼64%)
and user’s (∼68%) classification accuracies, these in-
correctly included water pixels make up over 60%
of the area identified as other/bare. Confusion similar
to that between the water and other/bare classes was

Table 5
Contingency table for Wad Medani SIR-B radar

Water Agriculture Other/bare Urban Total User’s accuracy (%)

Water 326 84 1200 114 1724 19.91
Agriculture 0 594 0 1366 1960 30.31
Other/bare 602 185 2313 285 3385 68.33
Urban 42 758 86 1670 2556 65.34
Total 970 1621 3599 3435 9625

Producer’s accuracy (%) 33.61 36.64 64.27 48.62

Overall accuracy (%) 50.94

found between the agriculture and urban areas. Agri-
cultural areas were commonly classified as urban fea-
tures (∼47% of the time) and the urban features were
often misclassified as agricultural areas (∼40% of the
time).

Such confusion can be expected from the exami-
nation of the SIR-B radar image inFig. 3. Both the
agriculture and urban areas are represented by simi-
larly high backscatter values with high texture or stan-
dard deviations, while the water and other/bare classes
are both represented with similarly low backscatter
values and relatively low texture and standard devi-
ations. As such, radar backscatter values alone were
not enough to discriminate between these land cover
classes.

4.2.2. Texture
Variance texture measures were extracted to in-

crease the discrimination between land use/cover
classes. The results for 13× 13, 21× 21 and 29× 29
textural window sizes indicate that texture did im-
prove the overall class discrimination within this
scene. Overall classification accuracies of 67, 71 and
68% were achieved with each of these moving win-
dow sizes (respectively).Table 6lists the producer’s
accuracies for the 21× 21 texture image. An interest-
ing aspect ofTable 6is the significant improvement
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Table 6
Producer’s accuracies for Wad Medani radar manipulations

Water Agriculture Bare soil Urban Total

Radar 34 37 64 49 51
Variance texture 21× 21 41 87 99 42 71
Two-band radar and 29× 29 texture 69 70 99 45 72

for some classes, agriculture and bare soil, and not
similar improvement for all classes.

4.2.3. Radar fusion
Combinations of radar and texture were examined

to assess the utility of an increased number of bands.
The result of one of these mergers and their resulting
classification accuracies are also included inTable 6.
There is no significant improvement in total classifi-
cation over texture. However, there are significant in-
dividual class differences such as the increase in wa-
ter and decrease in agriculture and urban accuracies.
The increase in water classification may be due to the
small size of the water that was lost in the large win-
dow size of the texture. By including the original radar
without filtering, it may have been able to more ac-
curately identify the water. The decrease in urban and
agriculture may be because of their similarity in the
original SIR-B backscatter.

4.3. Kathmandu

4.3.1. Original radar
Initial examination of the RADARSAT image for

Kathmandu provided poor classification results. As
can be seen inTable 7, the overall classification, as
well as most of the individual class accuracies, were

Table 7
RADARSAT original data results for Kathmandu

Grass Agriculture Old urban New urban Total User’s accuracy (%)

Grass 337 1257 0 115 1709 19.72
Agriculture 112 2882 44 1081 4119 69.97
Old urban 0 6 1086 1499 2591 41.91
New urban 0 185 284 1594 2063 77.27
Total 449 4330 1414 4289 10482

Producer’s accuracy (%) 75.06 66.56 76.80 37.16

Overall accuracy (%) 56.28

quite low. The more unique, higher backscatter areas
of the old urban class had the best producer’s clas-
sification accuracy at approximately 77%, but pro-
vided a very low user’s accuracy (42%). The primary
confusion was between old and new urban. If these
classes were combined, the results would be much bet-
ter. There was, however, also considerable confusion
between agriculture and new urban (1081 erroneously
classified truth pixels) and thus poor results for new
urban.

4.3.2. Texture
The high standard deviation associated with the

RADARSAT’s urban classes (Table 8) suggests that
measures of image texture could possibly increase the
discriminatory ability of radar. Measures of variance
texture were applied to the original RADARSAT data
over 5×5, 13×13 and 21×21 moving window sizes.
The initial smaller window sizes reflect the knowledge
of smaller features in the scene. The results indicate
that texture does improve discrimination. Overall clas-
sification accuracies of 71, 75 and 69% by respective
window size were achieved, improving over those of
the original radar data by about 20%.

Results achieved with the 13× 13 texture window
size were best. The effectiveness of this window size
is related to the variability and spacing of the ground
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Table 8
Kathmandu sample spectral signatures (RADARSAT and
RADARSAT 13× 13 texture)

RADARSAT Texture

Grass
χ 44.366 21.743
σ 11.005 10.674

Agriculture
χ 71.537 20.721
σ 21.204 2.228

Old urban
χ 238.677 45.338
σ 34.295 9.642

New urban
χ 166.089 57.855
σ 59.224 3.642

features being observed such as field and building size,
particularly in the new urban locations.Table 9con-
tains the contingency matrix for these results. The con-
fusions are within the two non-urban and the two ur-
ban classes. Class combinations would improve results
greatly.Table 8contains selected class mean texture
values for a 13×13 window. The almost identical mean
texture values for grass and agriculture (22 and 21) ex-
plain their classification confusion. Similarly,Table 8
documents the large texture differences between the
two urban and two non-urban classes that allow their
easy discrimination with variance measures.

4.3.3. Radar fusion
Several two- and three-band combinations of the

original radar data and the manipulations of those data
were examined to assess the utility associated with an
increased number of radar bands. Combinations exam-

Table 9
Kathmandu RADARSAT 13× 13 pixel variance texture

Grass Agriculture Old urban New urban Total User’s accuracy (%)

Grass 62 624 88 46 820 7.56
Agriculture 213 3594 2 0 3809 94.36
Old urban 122 112 801 791 1826 43.87
New urban 52 0 523 3452 4027 85.72
Total 449 4330 1414 4289 10482

Producer’s accuracy (%) 13.81 83.00 56.65 80.48

Overall accuracy (%) 75.45

ined included original radar and texture combinations
as well as combinations of multiple textures.Table
10 contains the results from the original RADARSAT
and 13× 13 window variance texture. The overall re-
sults are similar to the independent texture but there
are considerable changes from class to class. Almost
all of the confusion, however, is between the grass and
agriculture or new and old urban.Table 11is a sum-
mary of all three Kathmandu radar classifications.

5. Discussion

The radar data have been shown to be incapable
of accurately delineating the land use/cover types of
these three study sites. Variance texture measures were
found to be advantageous. The overall results were sig-
nificant improvements over radar and several individ-
ual classes had excellent results with texture. The com-
bination of original radar and texture measures gener-
ally did not provide significant improvements over the
texture measures independently. An important obser-
vation is that the radar improvements with texture are
not for all classes but some specific classes. To some
degree, it would be expected that the texture mea-
sures will improve results simply because of the fil-
tering procedure. However, filtering alone should have
improved all covers similarly which is not the case.
Clearly some covers do have more separability by use
of texture where they do not have separability in the
original radar.

RADARSAT data were used for two sites, Keri-
cho and Kathmandu, while SIR-B was used for Wad
Medani. This was simply a function of data avail-
ability. There was no intent to compare the sensors
in this study and no conclusions can be drawn.



N.D. Herold et al. / International Journal of Applied Earth Observation and Geoinformation 5 (2004) 113–128 127

Table 10
Kathmandu contingency table for RADARSAT and 13× 13 variance texture

Grass Agriculture Old urban New urban Total User’s accuracy (%)

Grass 302 552 3 267 1124 26.87
Agriculture 130 3755 0 5 3890 96.53
Old urban 0 6 973 1043 2022 48.12
New urban 17 17 438 2974 3446 86.30
Total 449 4330 1414 4289 10482

Producer’s accuracy (%) 67.26 86.72 68.81 69.34

Overall accuracy (%) 76.36

Table 11
Producer’s accuracies by class for Kathmandu radar processing

Grass Agriculture Old urban New urban Total

Radar 75 67 77 37 56
Variance texture 13× 13 14 83 57 80 75
Two-band radar and 13× 13 texture 67 87 69 69 76

Interestingly perhaps is that the overall classifica-
tion accuracy for the SIR-B site, Wad Medani, was
51%, between the two RADARSAT accuracies of 41
and 56%.

These results show the potential of radar texture
for mapping some basic land use/cover patterns. More
case studies will contribute to an improved under-
standing of useful radar analysis techniques. Future
applications of this project will include a compar-
ison with other classifiers, including a hierarchical
and regression tree approaches; an extension of ba-
sic land use/cover to more complex land use/cover
classification schemes; more radar manipulations such
as speckle reduction or post-classification filtering;
different depression angles, look directions or radar
dates; and sensor merger with optical data.
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